

MicroCART mini
DESIGN DOCUMENT

Executive Summary

The name of this project is MicroCART, which stands for Microprocessor

Controlled Aerial Robotics Team. This project is divided into two parts. The first part is

optimizing and improving a quadcopter called CrazyFlie, which will be used to conduct

MP-4 (Lab 4) of CPRE 488: Embedded Systems Design. This is important because the

team is providing a better and more convenient environment for CPRE 488 students to

learn. The second part of this project is implementing and improving on the firmware of a

quadcopter called FlyPi, which is a product of last year’s MicroCART team that will be

used in future live demonstrations during Scholar’s Day at ISU to attract prospective

students. The long-term goal of this project is to learn from what was and will be

implemented on the CrazyFlie and further improve on MicroCART’s heritage, the FlyPi.

The key design requirements would be to improve the backend-to-frontend

communication and the graph logger of the CrazyFlie to reduce latency by implementing

a new packet in Python that will contain graph logging values. As of the first semester,

the team will need to gain a better understanding of the backend communication before

implementation. If implemented perfectly, this design requirement will provide students

with a smooth and clearer GUI graph logger, which will help students have a better

understanding of the graph.

1

Besides that, the team plans on implementing a new component called a test stand

for the CrazyFlie. This test stand is an Arduino connected to a rotational sensor that

provides third-party roll, pitch, and yaw sensor values to assist in tuning the PID

controller. The test stand provides the students with an additional set of sensor values in

addition to the onboard sensor values from CrazyFlie, which will assist them in deducing

the parameters of the PID controller. The team’s plan was to connect this test stand to the

backend.

For the FlyPi, the team plans on implementing a global positioning tracking

system that will keep track of the current position of the FlyPi while it is autonomously

moving around the test field. This requirement will be implemented last as the team does

not currently possess the knowledge regarding the details of this implementation, but the

idea would be to calculate the distance the FlyPi has traveled in x,y, and z coordinates

through the aid of the PID controller and the IMU (Inertial measurement unit).

Overall, the team managed to complete the test stand implementation, such as

connecting it to the backend via a serial connection, and successfully plotting the test

stand values to the MicroCART GUI used by students in MP-4. Besides that, the team

improved the overall performance of the ground station, backend, and GUI applications

by reducing CPU consumption from 100% to 60-70%, which led to a drastically reduced

number of VM (Virtual Machine) and application crashes. The team also improved the

documentation presented in MP-4, such as the lab manual, by removing legacy

documentation that is not present in the current implementation and reorganizing the

2

verbose document. Due to the team’s effort and commitment to focus more on the MP-4

part of the project, the team was told by their advisor, Dr. Jones, that this is the smoothest

deployment of MP-4 by far in the history of MicroCART.

3

Learning Summary

Development Standards & Practices Used

Since this project is mainly software-focused embedded programming in C, C++, and

Python, the team would prioritize following standard software development standards.

● Variable assignments should not be made from within sub-expressions

● Class names should comply with a naming convention

● Local variable and function parameter names should comply with a naming

convention

● Failed unit tests should be fixed

● The resulting code, causing failed pipelines on Git, should never be deployed

Engineering Practices

Engineering standards are essential because they ensure that the products produced by

engineers meet users’ expectations. This means that the product is safe for users, has a

standard or consistent quality, and is environmentally friendly. Adhering to engineering

standards increases work efficiency and speeds up the engineering process. Therefore, the

existence of engineering standards is beneficial to both users and engineers, and these are

the engineering standards that the team thinks are applicable to the project.

● IEEE 802.11s-2011: IEEE Standard for Wireless LAN Medium Access Control

(MAC)

4

○ This standard is relevant because it focuses on wireless communication. In

the project, the team was given a backend that communicates the

remote-controlled quadcopter with the ground station, which means

wireless communication and data transmission.

● IEEE 1687-2014: IEEE Standard for Access and Control of Instrumentation

Embedded within a Semiconductor Device

○ This standard is about accessing instrumentation embedded within a

semiconductor device, which is precisely what the project focuses on

integrating and improving a quadcopter’s embedded systems.

● IEEE 1936.1-2021: IEEE Standard for Drone Applications Framework

○ This standard is about frameworks for the support of drone applications.

The project emphasizes working with drones (quadcopters) and their flight

control systems.

Summary of Requirements

1. Mini Quadcopter should be able to:

● Fly smoothly

○ Flight stabilization

○ No sudden “random” movements

○ Quick reactions to directional inputs

● Connect to remote equipment for data analysis

● Be able to connect to remote sensors and utilize the information to fly

5

● Can be utilized easily even by someone with no prior experience in

controlling any remote control vehicle

2. Frontend/Backend should be able to:

● Be accessible through the current method

● Display data from the flight information

● Be able to enable an uncontrolled flight via sensor data

3. Documentation must:

● Explain the steps throughout the project

○ Plan of action, task breakdown, time taken, changes made from the

previous project, what the team could have done better, and what

will be left for the following year’s group to complete.

● Document any problems that came up throughout the development process

and record how the team solved them for future project groups or, when

applicable, by teachers, TAs, and students.

● How to solve issues that come up frequently (FAQ Sheet)

● Catch users up-to-speed on the programming project, depending on their

role

○ Student, TA, Advisor, Teacher, Successor team, or the general

public

● Show and explain how the project connects to various other fields and

draw interest from observers to look deeper into it

6

Applicable Courses from the Iowa State University Curriculum

1. CPRE 2880: Embedded Systems 1: Introduction

2. CPRE 3080: Operating Systems: Principles and Practice

3. CPRE 4880: Embedded Systems Design

4. CPRE 4890: Computer Networking and Data Communications

New Skills/Knowledge acquired that were not taught in courses

1. Control Systems Theory

2. Socket Programming

3. Qt Creator

7

Table of Contents

1. Introduction 13

1.1. Problem Statement 13

1.2. Intended Users 14

2. Requirements, Constraints, And Standards 18

2.1. Requirements and Constraints 18

2.2. Engineering Standards 19

3 Project Plan 22

3.1 Project Management/Tracking Procedures 22

3.2 Task Decomposition 22

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 23

3.4 Project Timeline/Schedule 26

3.5 Risks And Risk Management/Mitigation 27

3.6 Personnel Effort Requirements 29

3.7 Other Resource Requirements 32

4 Design 33

4.1 Design Context 33

4.1.1 Broader Context 33

8

https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.1v1yuxt
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.4f1mdlm
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.nmf14n
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.4f1mdlm
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.2u6wntf
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.19c6y18
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.3tbugp1
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.28h4qwu
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.nmf14n
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.28h4qwu
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.nmf14n
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.37m2jsg
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.1mrcu09
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.46r0co2
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.2lwamvv
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.111kx3o
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.3l18frh
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.206ipza
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.4k668n3
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.2zbgiuw
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.1egqt2p

4.1.2 Prior Work/Solutions 35

4.1.3 Technical Complexity 38

4.2 Design Exploration 40

4.2.1 Design Decisions 40

4.2.2 Ideation 40

4.2.3 Decision-Making and Trade-Off 41

4.3 Proposed Design 43

4.3.1 Overview 43

4.3.2 Detailed Design and Visual(s) 44

4.3.3 Functionality 53

4.3.4 Areas of Concern and Development 54

4.4 Technology Considerations 55

5 Testing 57

5.1 Unit Testing 57

5.2 Interface Testing 57

5.3 Integration Testing 58

5.4 System Testing 58

5.5 Regression Testing 59

5.6 Acceptance Testing 59

9

https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.3ygebqi
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.2dlolyb
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.sqyw64
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.3cqmetx
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.1rvwp1q
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.4bvk7pj
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.2r0uhxc
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.1664s55
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.3q5sasy
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.25b2l0r
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.kgcv8k
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.1jlao46
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.2iq8gzs
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.xvir7l
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.3hv69ve
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.1x0gk37
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.4h042r0
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.2w5ecyt
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.1baon6m

5.7 User Testing 60

5.8 Results 60

6 Implementation 62

 6.1 Design Analysis 64

7 Professional Responsibility 65

7.1 Areas of Responsibility 65

7.2 Four Principles 67

7.3 Virtues 69

8 Conclusion 72

8.1 Summary of Progress 72

8.2 Value Provided 72

8.3 Next Steps 73

9 References 74

10 Appendices 75

 10.1 Appendix 1 - Operation Manual 75

 10.2 Appendix 2 - Code 80

 10.3 Appendix 3 - Team Contract 80

10

https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.3vac5uf
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.2afmg28
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.pkwqa1
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.t0ywk19hvcwc
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.39kk8xu
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.1opuj5n
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.48pi1tg
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.1hmsyys
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.2nusc19
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.1302m92
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.lmkjmc47xfj6
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.50g1l0t1eupi
https://docs.google.com/document/d/11V_sRCeRVnwOjHresS33rLTbiD_ZewC0/edit#heading=h.stahxq9ji7a0

List of figures/tables/symbols/definitions

1. MicroCART system overview:

2. Glossary of Terms:

2.1. CPRE 488 MP4/Lab 4 - The fourth lab of the CPRE 488: Embedded Systems Design

course. The team will be in charge of optimizing the equipment and software used to

conduct this lab.

2.2. CrazyFlie - The small drone used for the CPRE 488 MP4 Lab. It is manufactured by

Bitcraze[1] and has open-source firmware that can be easily written. When the term

drone is used, the CrazyFlie is usually the drone that is referenced.

11

2.3. FlyPi - The larger custom quadcopter built by previous MicroCART teams. Currently

in a complete state, but would require some optimizations.

2.4. GUI - C++ based Graphical User Interface that is created with the application QT,

which allows a user-friendly display of the frontend.

2.5. CLI - Command Line Interface, an interface through the command line which allows

the user to interact with the system using specific commands.

2.6. Ground station - Name used for the group of software components that lie in between

the quadcopters and the GUI: Backend, CrazyFlie Adapter, and CrazyFlie Ground

station.

2.7. Backend - Software module written in Python that handles incoming packets from the

frontend and sends them to the necessary destination. Also handles data from cameras

and other sources.

2.8. Crazy radio/dongle - USB radio stick that sends packets to and from the CrazyFlies.

2.9. Test stand - A device used to hold the CrazyFlie in place while fine-tuning its

parameters, a port is located at the bottom of the test stand that allows an Arduino to

connect to it.

2.10. Test stand - An Arduino connected to a sensor that will collect positional data

from the CrazyFlie through the port and send it to the PC directly via a USB cord.

12

1 INTRODUCTION

1.1 PROBLEM STATEMENT

Quadcopters, and drones in a broader sense, are seeing more day-to-day usage

across many fields such as agriculture, transportation of goods, the military-industrial

complex, and so many more! This team’s project is known as MicroCART mini, and the

team is designing/iterating new software for a mini-quadcopter that will be used as

learning materials for Iowa State University’s Department of Electrical and Computer

Engineering students, in addition to actualizing a quadcopter into flight via designing

hardware and software. As MicroCART is focusing on creating small, remote-controlled

devices for both educational and non-specific usages, the focus of the team’s design will

primarily be on sustaining controlled flight. Uncontrolled flight is a hazard not only to the

quadcopter but also to the environment around it, which means the team will have to

make the controls adaptable for the mini quadcopter to be used by untrained

non-professionals and for an automated program to be able to utilize sensors to obtain

information from around the quadcopter and through a program complete a flight in new

terrain while minimizing damage from or outright preventing any crashes. Since the

quadcopters are constrained by their small sizes, quadcopters with remote sensors to

absorb information were connected by the team, such that the quadcopters will be able to

utilize it for flight navigation. Sensory navigation opens up the possibility for

unnavigated routes to be flown, such as in a disaster scenario for search and rescue, to

have new route information recorded, and to optimize a flight path in new terrain safely.

13

1.2 INTENDED USERS

1. CPRE 488 Students

a. Senior/Graduate-level students taking CPRE 488 in Spring 2025.

b. Must have completed CPRE 381 or COMS 321

c. Must be able to perform with Mini-Quadcopters after 4 intro labs

d. A limited amount of time they can dedicate solely to this class

Needs: CPRE 488 students need an operational and improved platform to work on Lab 4.

The team can improve the prior hardware, systems, and framework to provide students

with a more convenient environment to work on Lab 4.

Benefits: Lab 4 for CPRE 488 students will be conducted smoother, increasing their

productivity and making better progress. Students will also learn how to fine-tune control

systems like the PID Control in Lab 4 and implement that into an RC quadcopter.

2. Successor Project Team

a. Senior-level students working on the MicroCART Senior Design Project

in the future.

b. Senior-level knowledge base

c. Multiple Disciplines (i.e., CPRE, EE, SE)

d. Will be working off of what the team left off

14

Needs: Successor Senior Design teams would need tutorials, like a step-by-step guide or

video tutorial, on complicated parts of the project. Besides that, they would need proper

and updated documentation on the project based on what the team changed and improved

from past projects. They would also need code that is easy to understand and to make

changes to.

Benefits: With improved information “library”, successor project teams will be able to

find the information that is associated with the different parts of the project they will be

working with in a shorter period of time, and be able to catch up or surpass the progress

that the team has made in comparison. It will also give an outline of the order to go about

the project when they are starting out, to give themselves a longer period of time to

optimize their own progress.

3. CPRE 488 Teacher/Advisor/TAs

a. Course Instructors for CPRE 488

b. High-level course knowledge

c. May have seen previous projects done and performed

d. Observing to see if the project and students’ work meet project

requirements

e. Have limited time and more responsibilities

Needs: A high-level overview of what the project is and how the team has organized the

project. Separation of different presentations and the expectations that the team was

15

trying to meet for all. Take note of the detail where the team found trouble and how it

was overcome. General instructions that detail the processes the team went through,

explaining why certain methods were chosen.

Benefits: A reduced time period for reading necessary items and ignoring the details that

they have seen before, and can otherwise ignore. An enhanced ability to find where

groups/individuals are struggling and to be able to quickly tell them possible solutions to

issues that arise. Able to take up less time than would otherwise be without the

pre-recordings

4. Potential Incoming College Students

a. High school tour groups

b. High school-level knowledge

c. Want to attract them to be like us

d. May have interests in other engineering fields

e. Need to show them how this connects to other ISU disciplines

Needs: Potential incoming college students need to be interested and drawn into the

project, and be able to see what they could learn if they were to become students here.

The incoming students need to have an explanation of the project that will make sense to

them, given that they will not be familiar with much of the material/technologies that

were used by the team.

16

Benefits: Potential students may be able to base their decisions on colleges by seeing

what engineering students at Iowa State can accomplish.

17

2. REQUIREMENTS, CONSTRAINTS, AND STANDARDS

2.1 REQUIREMENTS AND CONSTRAINTS

● Mini Quadcopter should be able to:

○ Fly smoothly

■ Flight stabilization

■ No sudden “random” movements

■ Quick reactions to directional inputs (For example, to stop turning

when the turning button is no longer pushed)

○ Connect to remote equipment for data analysis

○ Be able to connect to remote sensors and utilize the information to fly

○ Can be utilized easily even by someone with no prior experience in

controlling any remote control vehicle

● Frontend/Backend should be able to:

○ Be accessible through the current method

○ Display data from the flight information

○ Be able to enable an uncontrolled flight via sensor data

● Documentation must:

○ Explain the steps throughout the project

18

■ Plan of action, task breakdown, time taken, changes made from the

previous project, what the team could have done better, what the

team did not get to, and what will be left for the following year’s

group to complete.

○ Document any problems that came up throughout the development process

and record how the team solved them for future project groups or, when

applicable, by teachers, TAs, and students.

○ How to solve issues that come up frequently (FAQ Sheet)

○ Catch users up-to-speed on the programming project, depending on their

role

■ Student, TA, Advisor, Teacher, Successor team, or the general

public

○ Show and explain how this project connects to various other fields and

draw interest from observers to look deeper into it

2.2 ENGINEERING STANDARDS

The sub-category that is appropriate for this project would be Computer Technology. The

three IEEE standards that apply to this project are:

1. IEEE 802.11s-2011: IEEE Standard for Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) specifications Amendment.

19

● This standard is relevance because it focuses on wireless communication.

In this project, the team had a backend that communicated with the

remote-controlled quadcopter with the ground station, which means

wireless communication and data transmission.

2. IEEE 1687-2014: IEEE Standard for Access and Control of Instrumentation

Embedded within a Semiconductor Device

● This standard is about accessing instrumentation embedded within a

semiconductor device, which is precisely what this project focuses on:

integrating and improving a quadcopter's embedded systems.

3. IEEE 1936.1-2021: IEEE Standard for Drone Applications Framework

● This standard is about frameworks for the support of drone applications.

This project emphasizes working with drones (quadcopters) and their

flight control systems.

These standards were chosen due to how this project, which is building and/or

implementing a control system into a mini quadcopter, utilizes remote control through

wireless devices, accessing the quadcopter itself for data, and reiterating the fact that this

is a drone device that the team is using.

20

Some of the other possible standard choices that the team did not choose were

battery standards. The team did not use these standards due to them being rather broad

and rather nonspecific to this project, for the most part, due to them being a far more

secondary aspect, in comparison to the chosen standards, which are undoubtedly more

related

21

3 PROJECT PLAN

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

The team adopted a waterfall-agile hybrid methodology. The project is broken

down into different phases to guide the general path for the rest of the project. The

different phases include MP4, Backend, and Frontend. To effectively distribute work and

manage deadlines for these different phases, the team adopts the Agile methodology to

allocate tasks and issues.

Progress throughout the course of this project has been documented through the

use of GitLab issues. GitLab issues were used to designate tasks for each team member

and provide a timeline for what was needed to work on. This is how previous teams for

this project have tracked progress, and the team will follow suit. It is also helpful to track

deadlines and motivate/keep track of team members to work on a specific issue before it

is due.

3.2 TASK DECOMPOSITION

● Documentation

○ Progressive throughout

● MicroCART

22

○ CPRE 488 - MP 4 (aka Lab 4)

■ PID Research

■ CrazyFlie

○ Backend

■ CPRE 488- Framework

○ Frontend

■ GUI & CLI

○ Communication

■ CrazyFlie Adapter

■ CrazyFlie Ground Station

○ Global Positioning Control

○ Test Stand

● Semester End Presentation

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Milestones:

MP-4 compilation:

● Since it is based on an existing lab, it is easy to compile all the documents. The

goal is 100% completion, but not making a lab document that a student must

submit.

Understanding the backend (Big picture):

23

● This involves understanding how the system works from a high-level perspective.

It is quantifiable by the ability to explain what each component is and its purpose.

Dive into sub-components of the communication pipeline:

● Expanding on the last milestone, the team then needs to gain a deeper

understanding of each subcomponent. This is quantifiable in a similar way.

Optimize issues with the GUI:

● There are issues within the GUI that affect the ease of use. While it is functional,

there are prominent bugs that should be addressed. This is measurable by the

number of bugs encountered during a session. The team aims to attack the most

common ones to reduce the debugging time for students.

Add Global Positioning:

● This is a new feature the team will be adding to the 488 lab. This would need

some involvement from Dr. Jones to tie it to the 488 curriculum. To measure this

would lay the groundwork for other teams to build upon. The best outcome would

be to implement the feature and thoroughly add it to the lab.

Implement Test Stand

● The test stand is an Arduino that connects to the backend via a serial connection

that provides third-party roll, pitch, and yaw sensor values to assist in tuning the

PID controller. The test stand provides the students with an additional set of

sensor values in addition to the onboard sensor values from CrazyFlie, which will

24

assist them in deducing the parameters of the PID controller. The team’s plan was

to connect this test stand to the backend.

Performance Optimizations

● The team improved the overall performance of the ground station, backend, and

GUI applications by reducing CPU consumption from 100% to 60-70%, which

led to a drastically reduced number of VM (Virtual Machine) and application

crashes.

Lab Documentation

● The team also improved the documentation presented in MP-4, such as the lab

manual, by removing legacy documentation that is not present in the current

implementation and reorganizing the verbose document.

Explore FlyPi:

● This is a stretch goal in the experimental portion of the project, the previous teams

were doing some fairly complex stuff. A reasonable goal for the team would be to

organize better what already exists. The best outcome would be to expand upon

what the last group left.

Pick up where the last group left off (FlyPi):

● This is expanding on the last milestone. The actual contents of what is achievable

are unknown at this point, as the team has not completed the exploration yet.

25

3.4 PROJECT TIMELINE/SCHEDULE

Note:

● Subtasks are other colors of the same group

● Associated tasks are worked on while working on the task itself

First Semester

Second Semester

26

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Risk Scale: 1 (Low) - 10 (High)

Backend CprE 488 framework/ CprE 488 MP-4:

(2) Low risk:

● The team is working to optimize the existing solution. There are some bugs

present that could hinder students' progress in MP-4. The risk is low because the

team can always revert to the previous version that contains minor bugs.

● Mitigation: do incremental solutions so that if the team has trouble with one

aspect, it doesn't affect others.

Ground Station and Adapter:

(1) Low risk:

● This was requested from the previous senior design team. They wrote the

software to communicate with the crazy file through the crazy radio. In that

pipeline, there is an intermediate component, the adapter. They mentioned that the

ground station should absorb this. It works as is, but it might help speed up the

communication pipeline.

● Mitigation: This is more just ensuring that performance does not diminish and that

the result is more readable to next year's team.

Global Positioning:

(7) Medium risk.

● This is a familiar feature; therefore, the teams would be building it from the

ground up. It would be a rewarding aspect of the project. But the risk is that the

27

team does not get it done in the time allotted, and then would have to pass it to the

next team, which could lead to miscommunication or abandonment of the feature.

● Mitigation: makes sure that the team documents their intentions and progress to a

degree where, if the team does not finish, the next group will be able to pick up

where was left off quickly.

Deployment:

(9) High risk

● This is the final deployment of the VM containing the revisions. At the end of the

year, the team will want changes to be deployed across all 488 lab machines.

There is a reasonable concern that if there is an issue, there would be little time to

fix it. Therefore, none of the changes would take effect for the 488 lab.

● Mitigation: Do a test deployment beforehand to identify potential issues.

The highest risk task that the team had identified was the deployment of the MP4

lab. Now that this has passed, the team has been able to mitigate the risk and has not had

too many issues come up. The way that the team has done this has been by acting as TAs

during the lab sections to help fix any bugs or issues that a student may run into. Another

way is by making sure that the team is quick in sending out updates through the Discord

channel that the students use and by making small revisions to the MP4 Lab manual that

may be confusing or misleading. The team has also been able to do a good job at

maintaining the health of the quadcopters and ensuring that there are enough quadcopters

28

in the lab for everyone to be able to have access to a drone. An additional risk for

deployment was the addition of the test stand tracker and how this was going to be used.

This is a risk because there is an error where if the test stand is not disconnected or

dismounted from the virtual machine before closing the GUI, the whole system will

crash. This is something that the team has been able to mitigate by emphasizing in the

lab manuals that this will lead to a crash, and also went over this in the lab section before

students started using any of the technology.

3.6 PERSONNEL EFFORT REQUIREMENTS

4 Group Members - Expecting a minimum of 6 hours per week from each person

Note: The estimated hours that are used are the value of the largest amount of time

expected to be spent on a task, even though from the Gantt chart on 3.4.) Overlapping of

multiple tasks on various weeks can be seen, so even though estimated hours/week/

individual is 6 per say, then during the following weeks, less time will be dedicated to the

task.}

[Hours Total Formula]: Duration x Estimated Hours/Week x Number of individuals

Estimated hours Formula: [Hours Total] / 4 / 12

(Rounded up due to 3 weeks of solely research)

29

First Semester

Tasks Duration (Weeks)

Estimated

(Hours/week)

[Per individual]

Hours Total

(Hours)

[Sum of all team

members]

Documentation &

Research
14 2 96

Backend

CPRE 488-

Framework

5 – –

CPRE 488 - MP 4 5 6 120

PID Research 4 2 32

CrazyFlie 9 – –

GUI & CLI 4 3 48

Communication

(Adapter & ground

station)

5 - -

CrazyFlie Adapter 3 4 48

CrazyFlie Ground

station
3 4 48

Global Positioning

Control
2 3 24

Semester End

Presentation
3 3 48

30

Estimated Total

Duration
12 ~10

464

~116 per individual

[While the above is a calculated estimate, a more likely approximation is 80 total hours

and 8 hours/ week after accounting for time overlaps, division of work, and breaks]

Second Semester

Tasks Duration (Weeks)

Estimated

(Hours/week)

[Per individual]

Hours Total

(Hours)

[Sum of all team

members]

Documentation 17 2 136

Performance

Optimization
3 5 60

Test Stand Connection 5 3 60

Test Stand Logging 5 3 60

Scholar’s Day

Preparation
5 2 40

MP-4 Testing 3 2 24

MP-4 Deployment 3 2 24

MP-4 TA 3 4 48

31

Semester End

Presentation
3 1 12

Estimated Total

Duration
14 ~8

464

~112 per individual

[While the above is a calculated estimate, a more likely approximation is 80 total hours

and 8 hours/ week after accounting for time overlaps, division of work, and breaks]

3.7 OTHER RESOURCE REQUIREMENTS

Some non-financial resources that this project has utilized include knowledge

from the preceding groups and the code repository, virtual machine, and a BitCraze

CrazyFlie information sheet that will record the state of lab equipment. Quality assurance

is checked by both the team and their advisor to ensure that it works to the expected

specifications.

32

4 DESIGN

4.1 DESIGN CONTEXT

4.1.1 BROADER CONTEXT

The MicroCART team set out to improve the usability of the MicroCART

application for the CprE-488 lab. This became a priority for the team due to the

ramifications of a faulty application that is intended for students to use in the lab. When

the team first started to get acquainted with MP-4 issues, the team immediately noticed

some small quality of life issues that could be forgiven, but a couple of major issues that

directly hindered the team from doing the lab. It was the major issue that the team

focused on. From a student perspective, the course material is hard enough, but to also

have to battle faulty software is unacceptable. There were two main issues that the team

set out to fix.

The first issue noticed was that the application would bog down the virtual

machine, which led to the loss of communication between the application and the drone.

This lab involves the flight of the drone, so constant disconnections resulted in the

inability to fly the quadcopter confidently. Even on the less consequential portions of the

lab, where the drone is tethered down and the students are meant to observe the drone’s

movement and tune the drone's PID values accordingly, led to an external source of error

that was not the fault of the students.

33

The second issue was the unfinished implementation of the test stand. Previous

teams had designed a 3D-printed test stand that contained an integrated rotational sensor.

This sensor enables the student to check the drone's self-estimated parameters with an

external sensor. But the final piece of the puzzle was missing. To fully utilize this, two

connections needed to be made. The first was to use an Arduino to digitize the analog

data from the rotational sensor. The second connection was from the Arduino that

packaged the rotational data and relayed it to the backend via a serial connection. This

would then enable students to use the test stand sensor. This was one of the team's biggest

priorities due to the progress the previous team had made.

Area Description Examples

Student

Considerations

The design is intended for students

who are learning a new subject,

and for them, it is frustrating

when, along with the challenge of

learning, they are also having to

do so on unstable software.

If a student were in the middle

of one of their first test flights

and the drone lost connection

momentarily, it could lead to

unexpected behaviour, no fault

of the student's.

Servisablity As this design project is an

ongoing project, a future team will

likely have to work with or, at the

very least, read the code. So it is

the team's duty to make sure it is

readable.

When looking through the code

base for the first time, it can be

quite daunting, there is likely a

lot of stuff never seen before.

But if there are no comments or

34

supporting documentation, this

compounds the issue.

Safety This design is centered around the

use of a drone. There is the

potential of bodily harm to

students. This makes it vital to

clearly instruct the student on

safety procedures.

If the lab document is not clear

about how the drone should be

tethered down during initial

testing, the drone could fly into

someone's face.

4.1.2 PRIOR WORK/SOLUTIONS

The MicroCART project has been ongoing for many years, but the MicroCART

mini aspect of the project has been active for about six years, when the CPR E 488 class

was revamped due to technological advancements and started to move away from large

and dangerous quadcopters. The teams from previous years have designed many of the

class materials, ranging from the classroom GUI used in their MP-4 to the lab documents

and even the custom 3D-printed mini-quadcopter testing stands, which are used

frequently in the later parts of the lab.

But how does their project compare to similar products (mini quadcopters)? To

answer that, one must first examine some of the mini quadcopters available on the

market. The products utilized for this explanation include the Kopis Freestyle 4-inch FPV

35

Drone[5], the DJI Mini 4 Pro Drone[6], and an “Open source ESP32-based quadcopter

made from scratch”[4], which was assembled from individually sourced components by a

professional in the fields of computers and robotics. The Kopis Freestyle 4-inch FPV

Drone[5] is a mini quadcopter equipped with a first-person camera, though it has a short

flight time of five to six minutes unless upgraded with a better battery. The DJI Mini 4

Pro Drone[6] is a relatively large mini quadcopter with a longer battery life of 34

minutes, or 45 minutes with the battery upgrade, a more crash-resistant frame, and a

camera with night vision. However, these advantages come at the cost of a significantly

higher price ($759 without upgrades) and a weight of 249 grams, just one gram shy of the

250-gram threshold, at which point any drone must be registered with the FAA (Federal

Aviation Administration)[3]. The mini quadcopter most similar to their project is the

“Open source ESP32-based quadcopter made from scratch”[4], which is composed of

individual parts that are all detailed alongside sourcing information. This drone prioritizes

stability and was demonstrated to fly quite steadily.

Some aspects that make the MicroCART project unique compared to these mini

quadcopters include how their GUI interacts with the CrazyFlie to transmit commands

and receive data, as well as the presence of a custom test stand that allows for the testing

and configuration of the drone’s flight capabilities while preventing accidents. Most

drones on the market are connected to a limited piece of software, with only the

open-source drone allowing for easily customizable firmware. Unlike the other

open-source drones, however, CrazyFlie is an open-source quadcopter from BitCraze[1],

a company that sells both the drones and the equipment required to communicate with

36

them, while also providing troubleshooting software that can be freely downloaded to

repair firmware in case of microprocessor errors caused by crashes.

37

4.1.3 TECHNICAL COMPLEXITY

The addition of the test stand data at the students’ disposal was the most complex

feature the team implemented. This feature allowed students in the lab to pull from

multiple sources to more confidently work through the lab. Piping data from an analog

sensor to a graphical display on a separate system is what leads to the complexity of this

feature. Below is a diagram of the pipeline.

 Above is an overview of only the test stand data pipeline. In this one pipeline,

many disciplines are tested. Start at the rotational sensor, which could be thought of as a

high-precision, low-friction potentiometer where Vdd and GND are supplied to the

sensor, then through the use of the Arduino's analog pins, a third SENS line can be

sampled to determine the rotation.

38

Now the Arduino takes this voltage reading from the sensor and passes it through

a function to convert the voltage to radians. This function only provides the angle of the

sensor, but a key data point needed during the lab is the rate of change. This is where the

Arduino’s onboard timer plays a vital role, with the ability to calculate the delta time, the

rate is then able to be calculated. The Arduino now contains both data points, but must

wait for a request from the backend before sending the most current data points.

Within the backend, a dedicated thread is assigned to making connections to

external sources, primarily the drone. Responsibility for binding to the Arduino was

given to this thread. Once a secure connection is made, the thread first requests drone

data, then requests the test stand data from the Arduino. These two sources of data are not

received in the same format for the GUI to read. This is where the log file handler takes

over and formats the requested data into a single line and writes it to a log file. After data

is written to the log file, the GUI reads the new set of data points and plots them to a

graph that utilizes QT Creator’s plotting framework.

This pipeline tests multiple disciplines by containing 3 coding languages, both

analog and digital interpretation, and many different development and testing techniques.

But by far the most challenging aspect is the timing. This whole pipeline is on a strict

timeline for visual clarity; the drone and test stand data need to be aligned so that they are

both representing the same point in time.

39

4.2 DESIGN EXPLORATION

4.2.1 DESIGN DECISIONS

One of the initial ideas the team had was to streamline the data to the plotter, This

would require reworking most of the existing framework that had been built over the last

couple of teams. This would allow the data pipeline to have a greater data rate, resulting

in a smoother plot. The next big design decision was not to scrap the previous team's

work but rather improve upon it so as not to create more work for the team than needed.

There are many negatives to doing this, but the benefits are that the team is able to focus

on key issues rather than building up a new code base with potentially more issues. A

more focused design decision was hardware-oriented. It was to solve a known issue with

the Bitcraze drone; the solder joints of the battery connector are very prone to breaking.

This would extend the lifetime of the drone before maintenance is required.

4.2.2 IDEATION

For the decision to address the flaw in Bitcraze’s CrazyFlie design. This pertains

to the eventual break of the battery connector's solder joint. This break will occur due to

regular use in the lab far quicker than seems acceptable. The first solution is to cut the

broken cable, clean the old solder off the PCB, and re-solder the same cable back to the

drone.

40

The next solution was to buy new cable assemblies that allow for longer cables

that would take some of the strain off the solder joint.

The team explored the idea of designing a 3D-printed sled system that would

contain the battery; this sled system would remove the need for a wired connection in

favor of a guided connection.

Next, the team simplified the previous idea and looked to see if any of the header

pins on the drone were Vdd and GND. This would then allow for daughter boards that

would carry the battery and supply the drone power through the header pins.

The last idea was to use the same specification of male connector as the wired

version, but get a through-hole component that we could solder directly to the board,

which would have a much stronger connection that would stand up to wear and tear.

4.2.3 DECISION-MAKING AND TRADE-OFF

This problem started to become evident at an inopportune time for the team. Time

was a big concern for the solution we picked because the lab that needed the drones was

two weeks out from when the idea was picked.

 First idea, to just cut clean and re-solder the same cable back to the drone. This

was by far the quickest solution, and likewise was held fairly high on the list. But it came

with many drawbacks, the first being that the final cable is smaller, resulting in more

41

strain on the solder joining, which results in it breaking faster. The next drawback is that

there is potential damage that can be caused to the drone's PCB.

The idea to buy new cable assemblies that would provide the drone with a longer

battery connector is ideal; the cables are available online, and the implementation would

be staggered. Whenever a solder joint fails, a longer cable would be attached. To meet the

time constrain, the cables were available on Amazon Prime, with 2-day shipping.

 The sled idea didn't get much traction. It would involve quite a bit of CAD time to

first design and more than likely multiple revisions of 3D printing. This would be a huge

time sink that wouldn't be guaranteed to work. This would be more suited for next year's

team when they have months to develop the design.

 The daughter board is a good idea in concept, but none of the header pins were

mapped to Vcc, so it was instantly out.

 The last idea was to acquire a through-hole connector that would be soldered

directly to the drone's PCB. This had some traction because of the ruggedness it

provided, but the availability of the connectors wouldn't meet the time constraints

present. Therefore, this solution is relegated to a future team.

42

4.3 FINAL DESIGN

4.3.1 OVERVIEW

As this project is built upon year by year from each MicroCART team, the entire

design from the ground up is not completed in one year. The current revision of the

project started in 2019. The first 3 years of this revision were spent building the core

framework of the application and designing the CprE 488 lab. The next two teams

expanded functionality and worked to make the framework more robust. The current

team they are picking up the project in the second half of its lifespan. This is where the

final implementation of features and the polish is applied.

 There are two large-scale aspects that the team accomplished. The first is the

integration of an external test stand to provide data that isn't directly reported from the

drone itself. The reason this is important is that when writing software for the drone, the

drone's self-reported data, such as its rotational speed and angle, is not always reliable.

This may stem from an error in the student software or a faulty sensor on the drone. But

having an external source to validate the drone's self-reported data allows the students to

confidently determine if the software on the drone is working accordingly. The second

large-scale aspect the team accomplished fell into the polish category of work. This

entailed improving the efficiency of the application that students will have to use.

Through the use of rigorous code evaluation, many sections of the code were altered to

use fewer resources. The functionality of the code remained intact, but it lowered its

consumption of vital computing resources. The reason this is important is that the

43

application runs on a virtual machine, which is analogous to running a computer

simulation on a computer. This means the virtual machine is allotted far fewer resources

than the machine which the virtual machine is running on.

4.3.2 Detailed Design and Visual(s)

 Starting with the test stand data, the team's goal was to display the data from the

integrated test stand to the applications plotter. While this would be trivial to do in a

stand-alone application, the real challenge was navigating the existing framework that

was set up to only display data from the drone. Taking a deeper look at the pipeline that

was constructed, first, look at the sensor.

Figure 4.1: Test stand sensor

This rotational sensor is embedded into the test stand. The sensors are interacted

with through the use of a drone holder that locks the drone to a single axis of rotation.

44

The drone holder fits over the sensor probe and allows the sensor to read the exact

rotation of the drone on a given axis.

Figure 4.2: Drone holder

This sensor is analogous to a potentiometer in how it behaves electronically.

Mechanically, the sensor has very low friction to not introduce large amounts of error into

an already delicate system. The sensor has a three-pin interface like most potentiometers:

Vcc, GND, and Sense. Vcc is the upper bound voltage, and GND is the lower bound

voltage. This sets the range for the Sense pin, which is where the rotational data is read.

To interface with this sensor, the easiest way is to use an Arduino Nano, the

Arduino has all the features necessary to provide Vcc and GND as well as read an analog

signal.

45

Figure 4.3: Arduino Nano with analog pin VCC, GND, and Sense

The Arduino contains just enough computational power to act as an interpreter for

the sensor. An analog signal can't be given directly to a standard PC, this is why it is a

vital component. The Arduino is able to take the analog data and convert it to digital data

that can be transmitted via a USB serial connection. To convert the analog signal to

digital. By enabling the analog pin in the firmware, it passes voltage through its

integrated ADC. This allows the team to write firmware for the Arduino. Now, within the

Arduino firmware, the voltage Sense pin is a float primitive that interacts nicely with

code. A simple C function is used to convert the voltage to radians. The radians are then

converted to degrees for easier human readability.

46

Figure 4.4: Function to convert voltage to radians

The next piece of data needed is the rate of change in degrees per second. This

requires a time component. Another reason for using an Arduino is that it contains an

onboard timer that allows for the use of delta time. In this case delta time is the time in

seconds for one loop. By having the difference in time between two angle measurements

and the difference of the two angles, the rate of change is now available to report.

Figure 4.5: Function for rate calculation

 These calculations happen as fast as the Arduino can process them to

communicate over a serial port. During each loop, the Arduino checks to see if a request

47

has been made from the ground station; if so, it packages the two most current data points

and transmits them over the serial port.

Figure 4.6: Requesting and sending data

 The data has now been packaged into a universal format, the MicroCART

application can now be addressed. To reiterate, the team was working with a framework

that was not intended for this type of integration. In lieu of rewriting the ground station

that facilitates the transmission and reception of data to the radio, which in turn

communicates to the drone, the team decided to make due and fit it into the existing

framework.

 Starting with the ground station as a whole, the two threads that pertain to this are

the connection thread that is used to communicate with the drone radio and the logger

thread that is used to read the drone's reported data and format it into a log file. The initial

thought is to set up the serial communication in the connection thread, but this thread

specializes in communication with the drone. So the serial connection was created in the

log handler thread. When thinking in terms that the serial connection is just another set

of data points it makes sense to set it up there.

48

 This is where things get a little tricky. The logger was never intended to receive

external data other than the data of the drone; therefore, the format of the log file is

entirely dependent on what the drone says it is reporting. So, to allow for this external

source, we had to tell the drone to log the test stand data. The drone has no concept of

what that data is other than it being a float defined in its firmware. The drone has no way

to get this data; therefore, it responds with empty data. This was necessary for the log file

handler to reserve space for the test stand data.

Figure 4.7: Creating test stand logging variables

Figure 4.8: Log file header

49

Now that space is reserved in the log file, the data is intercepted before it is

formatted, and the serial port is polled, and the data is applied there, overwriting the

empty data from the drone. The formatted string is then written to the log file.

Figure 4.9: Log file data

As the log file handler is writing lines to the log file, the GUI application follows

along, reading each new line and parsing it to find the selected variables for plotting, then

takes the values in the position of that desired variable, the position is defined by the

header. The QT plotter framework then takes over from there to plot the data on the graph

in the GUI.

50

Figure 4.10: Plotter

The other large contribution was in the form of improving the efficiency of the

code. Originally, the functionality of each sub-system was sound. But when put together

is a real-world application, all the minor inefficiencies add up to create an unstable

environment. This is primarily due to running on a VM where resources are limited, and

depending on the host machine, not enough resources are available to the VM to keep up

with its consumption. This led to the VM’s CPU utilization consistently reaching over

100%, meaning that processes were being stalled.

51

Figure 4.11: High CPU utilization

The first improvement to the code was finding out about the overuse of busy

waits; the ideal use is none, but it's understandable when testing the sub-systems

individually, the busy wait doesn't seem to have a dramatic effect on performance. But

when multiple systems are busy waiting, they eat up CPU utilization, literally doing

nothing.

Figure 4.12: Busy-wait

The second improvement was achieved by finding a misconception that had

permeated for a couple of years. When logging, there is fine-tuning of how often the data

52

is sent from the drone to the ground station. This variable is the period of the data

transmissions. This had been treated as a frequency. So when previous teams were

running into this high CPU utilization, they would lower what they thought was the

frequency of data, but in fact, they were increasing the frequency of data. Once this was

realized, the team corrected the documentation, instructing users to do the opposite of

what truly needed to be done. The team also found a stable logging period that shouldn't

need to be changed.

4.3.3 Functionality

As this project revolves around the CprE 488 lab, our implementations were

directly used during our final semester. This allowed us to get crucial feedback for

overlooked errors in the lab manual and many quality-of-life improvements from the

students.

 As students in the lab, their first interaction with material created by the team was

the MP-4 manual that first gives the students a rundown of the hardware involved such as

all the features of the drone, how to connect a battery and power it on, as well as the new

edition of the test stand. The test stand portion was entirely written by the team because

of the new external sensor that could now be displayed in the application.

 The success was measured in the lack of negative feedback rather than

overwhelmingly positive feedback. It may seem weird, but the student doesn't know how

much the overall performance has increased when they never had to experience all the

53

issues that came along with the previous year's revision. As for the test stand sensor, it

was put to use and proved useful for some students during part two of the lab, where they

were writing their own firmware for the drone.

 The actual use case of everything implemented by the team is laid out in the MP-4

lab manual (Appendix 1). Other than the test stand, the interaction with the improved

efficiency is the lack of frustrating of having the connection drop mid testing, and

according to Dr. Jones, last year this was the source of a major headache. But this Year

the problem was gone, it didn't happen to anyone once.

4.3.4 Areas of Challenge

 One of the challenges that the team faced in implementing our design was

determining which piece of code logs and graphs data, and how it does it. By

back-tracing the GUI code, the team was able to follow the execution flow of the log file

handler Python script to understand how it was able to log to and graph from a log file.

Multiple challenges arose as the team continued with test stand implementation. For

example, the log file was unable to log more than 12 logging variables because it was

hard-coded by the previous team.

Besides that, the team was struggling to get the test stand angle and rate to show

up as a logging variable for the purpose of graphing those values on the GUI. In the end,

the team consulted their advisor, Dr. Jones. The team followed his advice and traversed

54

through CrazyFlie’s firmware and found a way to add dummy logging variables to the

CrazyFlie as a way to get it to show up in the log file, and it succeeded.

4.4 TECHNOLOGY CONSIDERATIONS

 In our project, we are utilizing the following technologies:

● Virtual Machine (Software)

○ Project environment and means of deployment

○ GUI & remote connection

○ (-) Prone to connection issues even with simple USB inputs

● CrazyFlie - BitCraze’s mini quadcopter model (Hardware)

○ Open source software and hardware for CrazyFlie

● Network technology / Radio Communications (Hardware)

○ The wireless communication method

● Microcontrollers/Low-level programming (Hardware/Software)

○ Drones onboard software

○ (-) Limited potential

● PCB fabrication (Solution)

○ Battery retention

● Test Stand (Hardware)

○ Arduino

○ Rotary encoder

55

The hardware is a set standard that we are unable to change in the MicroCART

project. Save for maybe the exception of the ‘battery retention racks’ or lack thereof, that

can be remedied by adding PCB-fabricated designs, which can then be attached to the

CrazyFlie. The virtual lab environment that is available on the CPR E 488 class website

is what will be changed. Specifically, editing the code that is part of the lab environment

download for the CPR E 488 MP-4 lab. Utilizing a custom GUI made by previous

groups, we have to look through how they made it while we were editing it. The

CrazyFlie mini quadcopter is a relatively inexpensive mini quadcopter and as such has

small equipment with limited possibilities. In order to communicate with the lab drones, a

USB radio is used to communicate with the CrazyFlie, though the radio can also

communicate with other equipment that is available in the lab, such as sensors, which can

then be fed back to the CrazyFlie and enable more advanced flying methods. Since it has

been decided that this year’s MicroCART team cannot change the hardware, the only

changes they could make are through the software, unless they were to choose to start

from scratch, but due to the limited timeline, it would be very unwise to choose to do so.

56

5 Testing

5.1 UNIT TESTING

Our infrastructure has several software components, allowing us to perform unit

tests on each of the parts individually to ensure that the system as a whole is working

properly. These components include the front-end GUIs, the backend modules, and the

ground station. The GUIs can be tested by entering inputs and verifying that the correct

outputs are there and that the correct thing is sent to the terminal. The backend and

ground station are more complex to unit test as one component, so this can be broken

down into smaller components that can be tested manually through checking terminal

output.

Besides that, the team conducted unit testing on the test stand Arduino because

the default .ino code given was from a previous team that had failed to implement it.

Through streamlined debugging, the team tested multiple test stands to ensure that the

rotational angle and rate provided by the sensor are correct. The team then compared

these third-party sensor values to the CrazyFlie’s onboard sensor values to determine if

they are valid.

5.2 INTERFACE TESTING

Interface testing would be more critical to our design due to the level of

complexity in communication between different components. Since we will not be

57

rewriting the firmware code for the CrazyFlie, we will not need to test the interface

between the open-source CrazyFlie and Crazyradio. Therefore, we would need to go

through a thorough testing for the rest of the components, which are the backend and

frontend communication via UNIX sockets. Our method of testing involves inserting

print statements when each process sends and receives a message, as well as outputting

the outputs to a file for debugging purposes to ensure that data is correctly getting passed,

which can be done easily with IDEs like Visual Studio Code.

Besides that, a method of interface testing that the team has adopted is inserting

logging variables into the firmware of the CrazyFlie so that external values such as the

test stand angle and rate data could be plotted on the graph. This allowed the team to

firmly determine if the overall test stand implementation is working.

5.3 INTEGRATION TESTING

Integration testing will be similar to our interface testing, such as running the

components bit-by-bit/individually and not as an overall large component, and generating

tests that will ensure the same output is generated when certain inputs are entered, which

can be easily done through the GUI or through some effort through the CLI.

5.4 SYSTEM TESTING

After each component is tested individually, we will move on the test the entirety

of the system altogether while running the tests with a CrazyFlie drone and conducting

Lab 4 step by step. Through the use of our clearly provided documentation of Lab 4 as

well as the GUI, we would be able to complete Lab 4 without encountering any errors or

58

bugs, while improving any quality of life issues that arise. This is primarily done before

deployment. The team conducted system testing on three different lab computers in

Coover 2041 simultaneously to ensure that conducting MP-4 concurrently would work,

as we are dealing with radio and packet transmission.

5.5 REGRESSION TESTING

MicroCART is based on updating and fixing up the work from teams as far back

as 6 years ago. As the project is in an already working state, what we need to do is

improve the project and make sure all pieces are working together, just like, if not better,

than before. We are ensuring that new features do not break the old functionality by

utilizing observe, test, check results, repeat the first three as needed, and finally push the

solutions to a development branch for further testing with the other group members’

work. By utilizing this process to test for breakage along with utilizing Git to observe

changes that occur in the workspace, and backtrack when an update breaks something

despite testing for otherwise, we are able to ensure stable testing and improvement.

5.6 ACCEPTANCE TESTING

The first step of acceptance testing is to ensure client approval, which is

accomplished by consulting our advisor, Dr. Jones, before deploying the software for lab

use. If we are given the green light by Dr. Jones, we would continue with the deployment

and the actual delivery of MP-4. We would then request feedback from students and

compare it with last year’s lab feedback to deduce if there was an improvement in the

overall quality of the lab and their experience. Overall, the team received mixed reviews

59

from the students, but almost none of the bad reviews were on the features that we have

implemented, but multiple other issues that have suddenly popped up or existing issues

that the team has yet to solve.

5.7 USER TESTING

Before deployment, the team would act as if they were CPRE 488 students and

perform MP-4 while using the current implementation. If a majority of the team comes to

an agreement, they would reach out to the current TA (Teaching Assistant) of CPRE 488

and a past student of CPRE 488 to have them assist the team in performing MP-4 while

forcibly finding edge cases that the team has overlooked. Overall, the TA has found

several issues regarding the current implementation, one of which is that the team

accidentally included answers for the PID values for Part 1 of the lab. These issues were

fixed, and MP-4 was deployed smoothly.

5.8 RESULTS

Overall, unit testing allowed the team to avoid making assumptions about the test

stand implementation that was created by a prior MicroCART team. The team was able to

pinpoint the problem of the current implementation as soon as they were able to set up

testing for multiple test stand Arduinos. One of the issues that was uncovered by the team

was that the yaw rate and angle were inverted if compared to the yaw rate and angle from

the onboard sensors.

60

Besides that, user testing made a difference in our deployment. The assistance

from the TA of CPRE 488 helped us achieve a near-flawless deployment of MP-4, with

the issue being that the TA has found several issues regarding the current implementation,

one of which is that the team accidentally included answers for the PID values for Part 1

of the lab. These issues were fixed, and MP-4 was deployed smoothly.

61

6 IMPLEMENTATION

The team was successful in implementing the test stand, which is one of the key

components of the final design, and was one of the core features that previous

MicroCART teams failed to implement. This test stand provides third-party roll, pitch,

and yaw sensor values, and plots said values to a graph to assist in tuning the PID

controller, which is the introductory part 1 of MP-4. The test stand assists students in

deducing the parameters of the PID controller, such as kd, kp, and ki.

Besides that, the team was able to improve the performance of the VM, which is

the development platform for MP-4, CPU utilization of the VM was decreased from

100% to 70%. Performance optimization was also one of our main design requirements

because previous teams suffered heavy criticism from past CPRE 488 students for the

numerous GUI and VM crashes they experienced. This was a good implementation by

the team, as this year’s MP-4 was dubbed the smoothest MP-4 in the history of

MicroCART.

One of the features that the team failed to implement was the global positioning

system (GPS) for the CrazyFlie. This was meant to be used in conjunction with the

lighthouse system to autonomously fly the CrazyFlie in a 3-D space, maintaining a steady

flight while receiving the current Coordinates of the CrazyFlie and the coordinates that it

will be flying to. The team was unfortunately unable to complete this implementation

because of the difficulty of the implementation and the time constraints faced after

implementing the test stand.

62

A solution for how the battery is held on to the drone quickly became an issue

right before the deployment for the CPRE 488 lab. This causes the team to scramble to

come up with a solution. The problem stemmed from weak solder joints that would often

break on drones with heavy use. The main constraint to the problem was time.

Deployment was in two weeks, so a 3D printed carrier was out of reach with the given

deadline. This forced the team to use a quicker fix and kicked the real problem down the

road. A more permanent solution is in the works, but it will have to be finished by a

future team. This is a known problem, so a solution is vital. Hopefully, next year's team

can take what has been planned and run with it.

63

6.1 DESIGN ANALYSIS

 The test stand implementation works well as the yaw, pitch, and roll sensor data

from the test stand are almost identical compared to the CrazyFlie’s onboard sensor. The

only issue with this implementation is that students need to disconnect the test stand from

the VM before closing the GUI application, or else the entire VM will crash. The team

looked into this and found that the VM cannot handle a sudden disconnection of a serial

device, which caused it to crash. The team was able to repeatedly mention the idea of

disconnecting the test stand first before closing the GUI application during the briefing of

MP-4 with the students and in the MP-4 lab manual. Thus, resulting in fewer crashes than

normal.

 The performance optimization implementation worked extremely well; the CPU

utilization of the GUI dropped from 100% to 70%, which reduces the number of crashes

due to lag and unresponsive applications. It is revealed to the team by previous CPRE

488 students and their advisor that MP-4 works better than before, as there were

significantly less number of GUI and VM crashes.

64

7 ETHICS AND PROFESSIONAL RESPONSIBILITY

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

65

One area that this team has done well is work competence. This team has

recorded the individual workloads and reported the individual contributions to the project

honestly and non-deceptively. An area that they have been working on is the health,

safety, and well-being of their users, who are students, because the goal of the project is

to ensure that no users will be harmed while using it. In order to improve this

66

shortcoming, documentation has been utilized by the team in order for emphasis to be

made in regard to certain tasks or risks. In case any other issues come up, this would be

the solution that is utilized and recommended by the team for future endeavors.

7.2 FOUR PRINCIPLES

Four Principles Beneficence Nonmaleficence Respect for
Autonomy Justice

Public health, safety, &
welfare

The project helps
improve the learning

of all who are
involved

Design promotes safe
practices

(ie, Test Stands)

Implementation
provides a

framework that
participants are

expected to
complete

Design allows for
access to all

parties

Global, cultural, &
social

Brings different
communities

together to learn

Implementation harms no
one indirectly

Design does not
affect cultural

practices

Benefits are shared
equally amongst

all parties

Environmental

Mini Quadcopters
are small, decreasing

potential
environmental

impact

Rechargeable batteries and
non-toxic, minimally

processed materials ensure
a low environmental

impact

Open-source
design allows

replacement parts
to be sourced

according to the
user’s desires

Implementation
does not harm the

environment

Economic Project teaches
job-applicable skills

The project largely uses
pre-existing open-source

design parts

CrazyFlie is an
open-source drone
that can be found
outside the school

Custom drone will
not infringe upon
any private sales;

CrazyFlie software
only affects our

items

67

A broader area context-principle that this team utilizes positively in this project is

how the open-source origin design allows for the replacement of parts non-limitedly. The

CrazyFlie mini quadcopter is used by numerous people for testing, ranging from students

to teachers, in this project’s context specifically. Accidents are bound to occur and

can/have caused enough damage that mere tape and glue are no longer enough as

solutions. Since there had been some issues that damaged a drone beyond repair prior to

the start of the second half of the project, the team has had to look to other locations for

replacement pieces, ranging from battery holding implements on top of many of the

drones, new wire connectors, and new batteries. It will be up to next year's MicroCART

team to find some of these solutions.

One broader context row that this project is largely missing, or rather lacking, is

the Global, Cultural, and Social row. Inside this row, many of the pairs involved in this

row are largely due to the scope of the project, which is limited, more so to the college.

Different communities are coming to the college to learn equally, while our project

instead is meant for the audience of a ‘student’ rather than a ‘student of a CERTAIN

CONTEXT’. Nonmaleficence, Respect for Autonomy, and Justice are all similarly

passive, with not much being put forward in this context. Thus, while this project was not

performing in a fashion that hinders this broader context, it is difficult to say that it is

supporting it, hence, it is a mostly neutral row.

 This section was updated, but no major changes were made, as the neutrality of

usage and intention of usage of open-source parts are integral parts of this project. This

project was and is meant to help students learn more in regard to the topics covered in

68

CPRE 488, and the non-limitation of parts allows students to create custom fixes,

preventing MicroCART teams from following a fixed path.

7.3 VIRTUES

Order, moderation, and resolution[2] are three virtues that are important to our

team. To the MicroCART team, order meant how the team was to utilize the AGILE and

Waterfall work methods. By working through items in a predefined manner, the team was

able to keep track of where they were as a group. Moderation is meant to keep us on

track, but not go wild and either do too much or do too little. The team each performed a

moderate amount of work on our own, but when it came to working together they were

rather lacking, and took more time to learn/check up on what each of us were individually

working on when it would likely have been more efficient to work as a group for certain

task items. Resolution, or more precisely, resolve, meant to firmly decide on what they

would do, before getting into a task and then finishing it, even if it meant having to ask

questions or learn new but necessary information to complete the task. In the future, the

team as individuals will be continuing this practice, but will ask fellow team members

when they come across something that they do not understand, as this would have made

many work-halting issues be resolved much quicker.

● Ryan: A virtue that I feel I have demonstrated in this project is perseverance.

Perseverance is important in projects such as this because there will be times

when a goal may seem impossible or too hard to achieve. This project has

brought plenty of challenges, and I have had to get through these challenges to

reach our goals. Another virtue that I find important that I have not demonstrated

69

yet is collaboration and working with others. I have found it difficult to find time

and opportunity to work with my team members as much as this project requires.

This is something that will need to be fixed next semester because it is impossible

for engineering projects as large as this to be completed by yourself.

● Daniel: An important virtue that I have demonstrated is clear and thorough

documentation. Throughout this project, I have been looking through, organizing,

and writing documents in order to better guide future students and project

members due to the quite bloated project base that has not really been pruned. In

comparison, a virtue that I have not demonstrated well is attentiveness to the

needs of others, which is largely in part due to not working deeply with all of my

fellow team members, something that our sub-groups will have to work together

to do as well. Over the course of the second half of the project, I managed to

improve upon this attentiveness, though the documentation began to fall behind as

tasks and troubleshooting shot up in importance.

● Jonah: A virtue that has been important to me has been the willingness to learn.

This project focused on software development, an area in which I was lacking.

The ability to recognize what I did not know and strive to research and gain an

understanding of a subject on the fly has been a constant cycle in the development

of our project. A virtue that I personally strive for, but regarding this project

ultimately fell short was time management. I did not spend enough time on this

project throughout the semester. This will need to be fixed for next semester. It

will most likely be caused by better personal planning.

70

● Yi: A virtue that I have demonstrated is inspiration and motivation. This is

important because teams require motivation to work, or they will end up with

poor work efficiency. What I did was create a Git Issues board and included tasks

with a deadline that we will follow as a team. A virtue that I think is important but

have not demonstrated is time management. Fall 2024 has been a very busy

semester for me. I had bad task prioritization and scheduling that ultimately

resulted in less work done for this project. In the future semester, I will be taking

fewer classes and managing my time more efficiently through a task scheduler.

71

8 CONCLUSION

8.1 SUMMARY OF PROGRESS

Overall, many of the reasonably accomplishable goals that were revised for the

second semester were able to be accomplished during the second half of this project.

These reasonable goals that the team accomplished included fully implementing the test

stand, connecting the backend, and updating the MP4 documents in order to ensure a

smooth deployment, while working on the FlyPi drone was a stretch goal.

For more context, over the course of the first half of the project, August 2024 -

December 2024, the MicroCART team had a late start and many timing issues, which

contributed to having a less-than-desirable amount of progress being made. When coming

up with a new schedule for the second half, January 2025 - May 2025, the team members

were able to achieve much better meeting times and work efforts because of it. These

improved meeting times allowed for much better cooperation between the members, and

after a meeting with their advisor, Dr. Philip Jones, where the new goals and the stretch

goal were established, the reasonable goals mentioned were able to be achieved. As such,

the MicroCART team was able to achieve its intended tasks before the deadline.

8.2 VALUE PROVIDED

 The updated MP4 items inside this project are the updated MP4 lab document and

virtual machine/lab environment. The updated MP4 lab document is much improved

compared to the previous iteration, which had poor navigation (i.e., jumping to the 57th

page from page 5 with no return jump available), dead links, and outdated or no longer

72

implemented pieces of information. As the team went through the document and lab

environment, they fixed the previously mentioned issues. Updating the lab environment

allowed the team to find many bugs due to bad code or overlooked issues from teams

from previous years, while also providing them an updated way to fix some

accidental/unintentional hardware issues. In a broader context, updating is what is needed

to stay up to date with the most improvements while also providing solutions to bugs or

things not directly tied to performance. Fixing the lab environment allowed the team to

fix the largest and most common hardware issue plaguing the project, which was a

firmware error that bricked the system, rendering any drone suffering from it unusable.

8.3 NEXT STEPS

The next step that this team is taking is finalizing the handover documents and

videos for next year’s team. As stated above in the conclusion, this project group did not

have a smooth start, which limited the amount of success they could achieve. Some of the

next steps that the team plans to give to future teams are a proper handover document,

giving direct access to where things that students are looking for can be found. Even after

the wrinkles of the first semester were smoothed out, there were still many issues with

finding the information within different parts of the repository and the pre-written student

documents that had team members having to wait for their advisor to obtain the

information or simply offer an alternative altogether. In order for future teams to have a

solid understanding of what needs to be fixed next, such as outdated items in the GUI or

missing buttons, any tasks unable to be completed in time by this year’s team will be

recorded with any thoughts going towards how to fix them written in accompaniment to

73

them to give the next team an idea of how to work on this next. Hopefully, this will

enable the future MicroCART teams to be able to complete the FlyPi design that has been

in progress for the past few years, but even as of yet, is unable to fly.

9 REFERENCES

Websites:

[1] “Bitcraze Shop.” Bitcraze Store, BitCraze, 2024, store.bitcraze.io/. Accessed 17 Nov.

2024.

[2] Franklin, Benjamin. “Benjamin Franklin - 13 Virtues | PDF | Virtue | Science.” Scribd,

1790, www.scribd.com/document/235479275/Benjamin-Franklin-13-Virtues. Excerpt

from Benjamin Franklin’s Autobiography.

[3] “How to Register Your Drone | Federal Aviation Administration.” Faa.gov, 18 Mar.

2024, www.faa.gov/uas/getting_started/register_drone. Accessed 7 Dec. 2024.

[4] Kalachev, Oleg. “Open Source ESP32-Based Quadcopter Made from Scratch.”

Arduino Project Hub, 6 Jan. 2024, projecthub.arduino.cc/okalachev/flix-58fe43.

Accessed 26 Sept. 2024.

[5] Liang, Oscar. “Review: Holybro Kopis Freestyle 4-Inch FPV Drone.” Oscar Liang,

27 July 2021, oscarliang.com/holybro-kopis-freestyle-4-inch/. Accessed 26 Sept. 2024.

[6] Nast, Condé. “The DJI Mini 4 pro Is a Small Drone with Huge Appeal.” WIRED, 23

Mar. 2024, www.wired.com/review/dji-mini-4-drone/. Accessed 26 Sept. 2024.

74

http://www.scribd.com/document/235479275/Benjamin-Franklin-13-Virtues
http://www.faa.gov/uas/getting_started/register_drone
http://projecthub.arduino.cc/okalachev/flix-58fe43
http://www.wired.com/review/dji-mini-4-drone/

10 APPENDICES

APPENDIX 1 – OPERATION MANUAL

The steps for operating the MP4 infrastructure are laid out best in the version of the MP4

lab document provided to students. The lab document is located here:

https://class.ece.iastate.edu/cpre488/labs/MP-4.pdf.

A simplified version of the steps will be provided below:

MP-4 Part 1

1. Log in to the VM using the Bitcraze account name and password of CrazyFlie.

Get a CrazyFlie drone and attach a battery to it. Take note of the number on the

bottom of the CrazyFlie drone. Using this number, refer to the CrazyFlie Radio

Number document provided in the lab document above.

2. Get the USB radio dongle and plug it into the PC you are connected to the VM

on. You should then be able to connect this device to the VM by going to the

Devices tab at the top of the VM screen and selecting USB. From here, select the

Bitcraze AB Crazyradio.

3. Open up a terminal in the VM and navigate to the

/MicroCART/CrazyFlie_software/CrazyFlie-firmware-lab-part-1/ folder. This

will be the folder where the MP4 lab part 1 is completed, which involves tuning

the PID controller.

4. Cd into the /tools/make/config and make or edit the config.mk file. Add in the

line CLOAD_CMDS=-w radio://0/<radio_channel>/2M/E7E7E7E7E7, replacing

75

https://class.ece.iastate.edu/cpre488/labs/MP-4.pdf

radio channel with the value found above. Go back to the folder in step 3 and run

the make cload command in a terminal. This will flash the CrazyFlie drone with

the firmware in part 1. After this is done, run crazycart <radio_channel> to open

up the GUI that has been created to assist with the lab.

5. At this point, you have a GUI open that is connected to the CrazyFlie drone.

From here, you can navigate through the GUI to set PID parameters, fly the drone

through the Controls page, set the logging parameters in the logging blocks page,

and assign a controller in the gamepad page.

6. The first step to tuning is to set parameters and alter these by using the logging

functionality to fine-tune the correct PID values. The parameters that need to be

tuned are in the s_pid_attitude and s_pid_rate groups. You can either set the

parameters individually or use the attached JSON file to set the parameters all at

once, which is recommended.

7. Now, you will want to attach the CrazyFlie drone to the test stands to be able to

tune the PID values without the drone actually flying. Go to the controls page and

start setting setpoints and graphing the appropriate logging variables as needed.

Set the thrust and press the “Apply” button to start the drone. The “Stop” button

will stop the drone.

8. After tuning the PID parameters correctly, you should be able to fly the drone off

the test stand and have a stable flight.

76

MP4 Part 2:

Step 1: General PID

Note, for this section, you should use the PID constants you found in part 1 for

known good values. You can set the default values in the student_pid.h file.

However, the constants you discovered earlier may have some assumptions built

in, so it may be necessary to re-tune the controller if a significantly different

algorithm is used.

1. The first thing that you will write is a general PID function and struct. The

PID struct that we provide you will be empty, and you will decide on what

should be included in it, which is defined in student_pid.h. You are

encouraged to make as many helper functions as you would like in your

student_pid.c file to help with roll, pitch, and yaw calculations.

2. The first thing I would recommend writing is the PidObject struct in

student_pid.h. This struct is used to hold the data that is used for all

other PID calculations, so it is required to write many of the other

functions.

3. Next, write the basic getters and setters for the PidObject in student_pid.c.

4. Now we can actually write the PID algorithm in the studentPidUpdate function.

5. At this point, you should have filled out everything in student_pid.c and

student_pid.h, make sure all of the “488 TODO” comments have been

fulfilled in these files.

Step 2: Student Attitude Controller

77

The attitude controller and attitude rate controller have their main functions in

student_attitude_controller.c, this is where you should begin working.

1. Complete the initialization function for the attitude controller.

2. Implement the student attitude rate controller PID.

3. Test the rate controller

4. Next, write the student attitude controller PID.

5. Test the attitude controller

6. Then finish the reset PID value helper functions

7. Finally, fill in the logging parameter addresses. Then, make sure all of the

“488 TODO” comments have been fulfilled in these files.

Step 3: Student Controller, Bringing it all together

Now we need to bring everything together in the controller_student.c file.

1. Start by reading in the setpoints for roll, pitch, and yaw angles as desired

values. Forthe mixed attitude mode, the yaw angle should change from the

current angle based on the rate given. Also, set the desired thrust.

2. Use the attitude PID controller to set the desired attitude rate to the value

calculated. If the controller is in velocity mode, overwrite the attitude rates

with the setpoints provided.

3. Next, input the desired attitude rates into the PID controller and use the

outputs to set the command variables for roll, pitch, and yaw. Set the

output thrust.

78

4. Copy the values into separate variables for logging purposes.

5. Complete the logging parameters by filling in the addresses.

At this point, you should have filled out everything in all files, and make sure all of the

“488 TODO” comments have been fulfilled.

Step 4: Final Check

● Before you go flying your CrazyFlie for real, it's a good idea to verify

everything works as intended on the test stand. Attach the drone to the test

stand and briefly check that all axes respond as you expect. For this step, you

can use manual setpoints or a gamepad connected to the ground station. See

here for details on using a gamepad with the ground station.

● If all looks good, take her for a spin and see how she handles! Be careful of

others in the lab and try not to crash it too hard!

79

APPENDIX 2 – CODE

● https://git.ece.iastate.edu/danc/MicroCART

APPENDIX 3 – TEAM CONTRACT

Required Skill Sets for the Project

● Coding Skills (At least one of: Python | C | C++)

● Networking knowledge

● Embedded systems

● Embedded programming

● Able to utilize Linux / Command Line Interface / Make

Skill Sets covered by the Team

Green = Have || Yellow = Some exposure || Red = No experience

 Coding

languages

Networking

knowledge

Embedded

Systems

Embedded

Programming

Linux /

CLI / Make

Daniel

Jonah

80

https://git.ece.iastate.edu/danc/MicroCART

Ryan

Yi

Project Management Style Adopted by the Team

A hybrid method of the Waterfall method and the Agile method for project management.

Individual Project Management Roles

● Daniel Zaucha: Client interaction, Communications Lead

● Jonah Upah: Hardware Lead, Team Secretary

● Ryan Lowe: Technical Advisor

● Yi Hang Ang: Software Lead

Team Contract

Team Members:

1) Daniel Zaucha 2) Ryan Lowe

3) Jonah Upah 4) Yi Hang Ang

Team Procedures

1. Day, time, and location: Face-to-Face

81

- Wednesday:  11:00 AM - 12:00 PM (Advisor Meetings)

- Monday: 11:00 AM - 2:00 PM

- Friday: 1:00 PM - 5:00 PM

- Sunday: 11:00 AM - 2:00 PM

2. Preferred method of communication updates, reminders, issues, and scheduling

(e.g., e-mail, phone, app, face-to-face):

- Meetings are done in person, unless someone cannot come in person.

- Discord server set up with all group members to communicate when not in

person.

- Discord, Email, Text last resort

3. Decision-making policy (e.g., consensus, majority vote):

- Majority votes are required for large-consequential decision-making. If

there is no majority or votes are split, we will discuss as a team and try to

reach a consensus from group discussion over the issue (OR get Dr. Jones

as a tie-breaker vote).

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will

minutes be shared/archived):

- Jonah or Daniel will set up meeting notes and record action items during

the meeting. Notes will be kept in a shared google drive folder.

82

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team

meetings:

- Everyone will be expected to attend scheduled meetings unless

extenuating circumstances come up. If this happens, the team member

will inform the group of this.

2. Expected level of responsibility for fulfilling team assignments, timelines, and

deadlines:

- Everyone should contribute to completing team assignments, ideally

before deadlines, but preferably a few days before. If someone is not going

to get something done because of circumstances, be sure to contact the

group for assistance.

3. Expected level of communication with other team members:

- Discord is how we communicate with each other about meeting and tasks.

During the working day responses are expected, subject to change.

4. Expected level of commitment to team decisions and tasks:

- Everyone puts in an equal amount of time, and thought behind decision

making.

Leadership

1. Leadership roles for each team member:

83

- Jonah Upah: Hardware Lead, Team Secretary

- Yi Hang Ang: Software Lead

- Ryan Lowe: Technical Advisor

- Daniel Zaucha: Client interaction, Communications Lead

- All members work to assist and perform the duties so that the group

succeeds as a while. I.e. Software lead can still work on the backend.

2. Strategies for supporting and guiding the work of all team members:

- The report document will track tasks and time.

- Meeting will be a place to discuss concerns about the timeline.

- Report document will also have new issues.

3. Strategies for recognizing the contributions of all team members:

- Contributions of team members will be noted on the weekly reports and

discussed in meetings.

84

	MicroCART mini
	Executive Summary
	
	Learning Summary
	
	1 INTRODUCTION
	1.1 PROBLEM STATEMENT
	1.2 INTENDED USERS

	2. REQUIREMENTS, CONSTRAINTS, AND STANDARDS
	2.1 REQUIREMENTS AND CONSTRAINTS
	2.2 ENGINEERING STANDARDS

	3 PROJECT PLAN
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2 TASK DECOMPOSITION
	3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	3.4 PROJECT TIMELINE/SCHEDULE
	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	
	3.6 PERSONNEL EFFORT REQUIREMENTS
	3.7 OTHER RESOURCE REQUIREMENTS

	
	4 DESIGN
	4.1 DESIGN CONTEXT
	4.1.1 BROADER CONTEXT
	4.1.2 PRIOR WORK/SOLUTIONS
	4.1.3 TECHNICAL COMPLEXITY

	4.2 DESIGN EXPLORATION
	4.2.1 DESIGN DECISIONS
	One of the initial ideas the team had was to streamline the data to the plotter, This would require reworking most of the existing framework that had been built over the last couple of teams. This would allow the data pipeline to have a greater data rate, resulting in a smoother plot. The next big design decision was not to scrap the previous team's work but rather improve upon it so as not to create more work for the team than needed. There are many negatives to doing this, but the benefits are that the team is able to focus on key issues rather than building up a new code base with potentially more issues. A more focused design decision was hardware-oriented. It was to solve a known issue with the Bitcraze drone; the solder joints of the battery connector are very prone to breaking. This would extend the lifetime of the drone before maintenance is required.
	4.2.2 IDEATION
	4.2.3 DECISION-MAKING AND TRADE-OFF

	4.3 FINAL DESIGN
	4.3.1 OVERVIEW
	4.3.2 Detailed Design and Visual(s)
	4.3.3 Functionality
	4.3.4 Areas of Challenge

	
	4.4 TECHNOLOGY CONSIDERATIONS

	5 Testing
	5.1 UNIT TESTING
	5.2 INTERFACE TESTING
	5.3 INTEGRATION TESTING
	5.4 SYSTEM TESTING
	5.5 REGRESSION TESTING
	5.6 ACCEPTANCE TESTING
	5.7 USER TESTING
	5.8 RESULTS

	6 IMPLEMENTATION
	
	6.1 DESIGN ANALYSIS

	
	7 ETHICS AND PROFESSIONAL RESPONSIBILITY
	7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	
	7.2 FOUR PRINCIPLES
	7.3 VIRTUES
	

	
	8 CONCLUSION
	8.1 SUMMARY OF PROGRESS
	8.2 VALUE PROVIDED
	8.3 NEXT STEPS

	9 REFERENCES
	10 APPENDICES
	APPENDIX 1 – OPERATION MANUAL
	Step 1: General PID
	Step 2: Student Attitude Controller
	Step 3: Student Controller, Bringing it all together
	Step 4: Final Check

	
	
	
	
	APPENDIX 2 – CODE
	APPENDIX 3 – TEAM CONTRACT
	Team Members:
	Team Procedures
	Participation Expectations
	Leadership

