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Executive Summary 

 

The name of this project is MicroCART, which stands for Microprocessor 

Controlled Aerial Robotics Team. This project is divided into two parts. The first part is 

optimizing and improving a quadcopter called CrazyFlie, which will be used to conduct 

MP-4 (Lab 4) of CPRE 488: Embedded Systems Design. This is important because the 

team is providing a better and more convenient environment for CPRE 488 students to 

learn. The second part of this project is implementing and improving on the firmware of a 

quadcopter called FlyPi, which is a product of last year’s MicroCART team that will be 

used in future live demonstrations during Scholar’s Day at ISU to attract prospective 

students. The long-term goal of this project is to learn from what was and will be 

implemented on the CrazyFlie and further improve on MicroCART’s heritage, the FlyPi.  

 

The key design requirements would be to improve the backend-to-frontend 

communication and the graph logger of the CrazyFlie to reduce latency by implementing 

a new packet in Python that will contain graph logging values. As of the first semester, 

the team will need to gain a better understanding of the backend communication before 

implementation. If implemented perfectly, this design requirement will provide students 

with a smooth and clearer GUI graph logger, which will help students have a better 

understanding of the graph.  
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Besides that, the team plans on implementing a new component called a test stand 

for the CrazyFlie. This test stand is an Arduino connected to a rotational sensor that 

provides third-party roll, pitch, and yaw sensor values to assist in tuning the PID 

controller. The test stand provides the students with an additional set of sensor values in 

addition to the onboard sensor values from CrazyFlie, which will assist them in deducing 

the parameters of the PID controller. The team’s plan was to connect this test stand to the 

backend. 

 

For the FlyPi, the team plans on implementing a global positioning tracking 

system that will keep track of the current position of the FlyPi while it is autonomously 

moving around the test field. This requirement will be implemented last as the team does 

not currently possess the knowledge regarding the details of this implementation, but the 

idea would be to calculate the distance the FlyPi has traveled in x,y, and z coordinates 

through the aid of the PID controller and the IMU (Inertial measurement unit).  

 

Overall, the team managed to complete the test stand implementation, such as 

connecting it to the backend via a serial connection, and successfully plotting the test 

stand values to the MicroCART GUI used by students in MP-4. Besides that, the team 

improved the overall performance of the ground station, backend, and GUI applications 

by reducing CPU consumption from 100% to 60-70%, which led to a drastically reduced 

number of VM (Virtual Machine) and application crashes. The team also improved the 

documentation presented in MP-4, such as the lab manual, by removing legacy 

documentation that is not present in the current implementation and reorganizing the 
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verbose document. Due to the team’s effort and commitment to focus more on the MP-4 

part of the project, the team was told by their advisor, Dr. Jones, that this is the smoothest 

deployment of MP-4 by far in the history of MicroCART. 
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Learning Summary 
 

Development Standards & Practices Used 

Since this project is mainly software-focused embedded programming in C, C++, and 

Python, the team would prioritize following standard software development standards. 

● Variable assignments should not be made from within sub-expressions 

● Class names should comply with a naming convention 

● Local variable and function parameter names should comply with a naming 

convention 

● Failed unit tests should be fixed 

● The resulting code, causing failed pipelines on Git, should never be deployed 

 
Engineering Practices 

Engineering standards are essential because they ensure that the products produced by 

engineers meet users’ expectations. This means that the product is safe for users, has a 

standard or consistent quality, and is environmentally friendly. Adhering to engineering 

standards increases work efficiency and speeds up the engineering process. Therefore, the 

existence of engineering standards is beneficial to both users and engineers, and these are 

the engineering standards that the team thinks are applicable to the project. 

● IEEE 802.11s-2011: IEEE Standard for Wireless LAN Medium Access Control 

(MAC) 
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○ This standard is relevant because it focuses on wireless communication. In 

the project, the team was given a backend that communicates the 

remote-controlled quadcopter with the ground station, which means 

wireless communication and data transmission. 

● IEEE 1687-2014: IEEE Standard for Access and Control of Instrumentation 

Embedded within a Semiconductor Device 

○ This standard is about accessing instrumentation embedded within a 

semiconductor device, which is precisely what the project focuses on 

integrating and improving a quadcopter’s embedded systems. 

● IEEE 1936.1-2021: IEEE Standard for Drone Applications Framework 

○ This standard is about frameworks for the support of drone applications. 

The project emphasizes working with drones (quadcopters) and their flight 

control systems.  

 

Summary of Requirements 

1. Mini Quadcopter should be able to: 

● Fly smoothly 

○ Flight stabilization 

○ No sudden “random” movements 

○ Quick reactions to directional inputs 

● Connect to remote equipment for data analysis 

● Be able to connect to remote sensors and utilize the information to fly 
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● Can be utilized easily even by someone with no prior experience in 

controlling any remote control vehicle 

2. Frontend/Backend should be able to: 

● Be accessible through the current method 

● Display data from the flight information 

● Be able to enable an uncontrolled flight via sensor data 

3. Documentation must: 

● Explain the steps throughout the project 

○ Plan of action, task breakdown, time taken, changes made from the 

previous project, what the team could have done better, and what 

will be left for the following year’s group to complete. 

● Document any problems that came up throughout the development process 

and record how the team solved them for future project groups or, when 

applicable, by teachers, TAs, and students. 

● How to solve issues that come up frequently (FAQ Sheet) 

● Catch users up-to-speed on the programming project, depending on their 

role 

○ Student, TA, Advisor, Teacher, Successor team, or the general 

public 

● Show and explain how the project connects to various other fields and 

draw interest from observers to look deeper into it 
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Applicable Courses from the Iowa State University Curriculum  

1. CPRE 2880: Embedded Systems 1: Introduction 

2. CPRE 3080: Operating Systems: Principles and Practice 

3. CPRE 4880: Embedded Systems Design 

4. CPRE 4890: Computer Networking and Data Communications 

 

New Skills/Knowledge acquired that were not taught in courses 

1. Control Systems Theory 

2. Socket Programming 

3. Qt Creator  
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List of figures/tables/symbols/definitions 

 
1. MicroCART system overview: 

 

2. Glossary of Terms: 

2.1. CPRE 488 MP4/Lab 4 - The fourth lab of the CPRE 488: Embedded Systems Design 

course. The team will be in charge of optimizing the equipment and software used to 

conduct this lab. 

2.2. CrazyFlie - The small drone used for the CPRE 488 MP4 Lab. It is manufactured by 

Bitcraze[1] and has open-source firmware that can be easily written. When the term 

drone is used, the CrazyFlie is usually the drone that is referenced. 
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2.3. FlyPi - The larger custom quadcopter built by previous MicroCART teams. Currently 

in a complete state, but would require some optimizations. 

2.4. GUI - C++ based Graphical User Interface that is created with the application QT, 

which allows a user-friendly display of the frontend. 

2.5. CLI - Command Line Interface, an interface through the command line which allows 

the user to interact with the system using specific commands. 

2.6. Ground station - Name used for the group of software components that lie in between 

the quadcopters and the GUI: Backend, CrazyFlie Adapter, and CrazyFlie Ground 

station. 

2.7. Backend - Software module written in Python that handles incoming packets from the 

frontend and sends them to the necessary destination. Also handles data from cameras 

and other sources. 

2.8. Crazy radio/dongle - USB radio stick that sends packets to and from the CrazyFlies. 

2.9. Test stand - A device used to hold the CrazyFlie in place while fine-tuning its 

parameters, a port is located at the bottom of the test stand that allows an Arduino to 

connect to it. 

2.10. Test stand - An Arduino connected to a sensor that will collect positional data 

from the CrazyFlie through the port and send it to the PC directly via a USB cord. 
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1 INTRODUCTION 

1.1 PROBLEM STATEMENT 

Quadcopters, and drones in a broader sense, are seeing more day-to-day usage 

across many fields such as agriculture, transportation of goods, the military-industrial 

complex, and so many more! This team’s project is known as MicroCART mini, and the 

team is designing/iterating new software for a mini-quadcopter that will be used as 

learning materials for Iowa State University’s Department of Electrical and Computer 

Engineering students, in addition to actualizing a quadcopter into flight via designing 

hardware and software. As MicroCART is focusing on creating small, remote-controlled 

devices for both educational and non-specific usages, the focus of the team’s design will 

primarily be on sustaining controlled flight. Uncontrolled flight is a hazard not only to the 

quadcopter but also to the environment around it, which means the team will have to 

make the controls adaptable for the mini quadcopter to be used by untrained 

non-professionals and for an automated program to be able to utilize sensors to obtain 

information from around the quadcopter and through a program complete a flight in new 

terrain while minimizing damage from or outright preventing any crashes. Since the 

quadcopters are constrained by their small sizes, quadcopters with remote sensors to 

absorb information were connected by the team, such that the quadcopters will be able to 

utilize it for flight navigation. Sensory navigation opens up the possibility for 

unnavigated routes to be flown, such as in a disaster scenario for search and rescue, to 

have new route information recorded, and to optimize a flight path in new terrain safely.  
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1.2 INTENDED USERS 

1. CPRE 488 Students  

a. Senior/Graduate-level students taking CPRE 488 in Spring 2025. 

b. Must have completed CPRE 381 or COMS 321 

c. Must be able to perform with Mini-Quadcopters after 4 intro labs 

d. A limited amount of time they can dedicate solely to this class 

Needs: CPRE 488 students need an operational and improved platform to work on Lab 4. 

The team can improve the prior hardware, systems, and framework to provide students 

with a more convenient environment to work on Lab 4. 

 

Benefits: Lab 4 for CPRE 488 students will be conducted smoother, increasing their 

productivity and making better progress. Students will also learn how to fine-tune control 

systems like the PID Control in Lab 4 and implement that into an RC quadcopter. 

 

2. Successor Project Team 

a.  Senior-level students working on the MicroCART Senior Design Project 

in the future. 

b. Senior-level knowledge base 

c. Multiple Disciplines (i.e., CPRE, EE, SE) 

d. Will be working off of what the team left off 
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Needs: Successor Senior Design teams would need tutorials, like a step-by-step guide or 

video tutorial, on complicated parts of the project. Besides that, they would need proper 

and updated documentation on the project based on what the team changed and improved 

from past projects. They would also need code that is easy to understand and to make 

changes to. 

 

Benefits: With improved information “library”, successor project teams will be able to 

find the information that is associated with the different parts of the project they will be 

working with in a shorter period of time, and be able to catch up or surpass the progress 

that the team has made in comparison. It will also give an outline of the order to go about 

the project when they are starting out, to give themselves a longer period of time to 

optimize their own progress. 

 

3. CPRE 488 Teacher/Advisor/TAs 

a. Course Instructors for CPRE 488 

b. High-level course knowledge 

c. May have seen previous projects done and performed 

d. Observing to see if the project and students’ work meet project 

requirements 

e. Have limited time and more responsibilities 

Needs: A high-level overview of what the project is and how the team has organized the 

project. Separation of different presentations and the expectations that the team was 
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trying to meet for all. Take note of the detail where the team found trouble and how it 

was overcome. General instructions that detail the processes the team went through, 

explaining why certain methods were chosen. 

 

Benefits: A reduced time period for reading necessary items and ignoring the details that 

they have seen before, and can otherwise ignore. An enhanced ability to find where 

groups/individuals are struggling and to be able to quickly tell them possible solutions to 

issues that arise. Able to take up less time than would otherwise be without the 

pre-recordings 

 

4.  Potential Incoming College Students  

a. High school tour groups  

b. High school-level knowledge 

c. Want to attract them to be like us 

d. May have interests in other engineering fields 

e. Need to show them how this connects to other ISU disciplines 

Needs: Potential incoming college students need to be interested and drawn into the 

project, and be able to see what they could learn if they were to become students here.  

The incoming students need to have an explanation of the project that will make sense to 

them, given that they will not be familiar with much of the material/technologies that 

were used by the team. 
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Benefits: Potential students may be able to base their decisions on colleges by seeing 

what engineering students at Iowa State can accomplish.  
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2. REQUIREMENTS, CONSTRAINTS, AND STANDARDS 

2.1 REQUIREMENTS AND CONSTRAINTS 

● Mini Quadcopter should be able to:  

○ Fly smoothly 

■ Flight stabilization 

■ No sudden “random” movements 

■ Quick reactions to directional inputs (For example, to stop turning 

when the turning button is no longer pushed) 

○ Connect to remote equipment for data analysis 

○ Be able to connect to remote sensors and utilize the information to fly 

○ Can be utilized easily even by someone with no prior experience in 

controlling any remote control vehicle 

 

● Frontend/Backend should be able to: 

○ Be accessible through the current method 

○ Display data from the flight information 

○ Be able to enable an uncontrolled flight via sensor data 

 

● Documentation must: 

○ Explain the steps throughout the project 
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■ Plan of action, task breakdown, time taken, changes made from the 

previous project, what the team could have done better, what the 

team did not get to, and what will be left for the following year’s 

group to complete. 

○ Document any problems that came up throughout the development process 

and record how the team solved them for future project groups or, when 

applicable, by teachers, TAs, and students. 

○ How to solve issues that come up frequently (FAQ Sheet) 

○ Catch users up-to-speed on the programming project, depending on their 

role  

■ Student, TA, Advisor, Teacher, Successor team, or the general 

public 

○ Show and explain how this project connects to various other fields and 

draw interest from observers to look deeper into it 

 

2.2 ENGINEERING STANDARDS 

 

The sub-category that is appropriate for this project would be Computer Technology. The 

three IEEE standards that apply to this project are: 

1. IEEE 802.11s-2011: IEEE Standard for Wireless LAN Medium Access Control 

(MAC) and Physical Layer (PHY) specifications Amendment. 
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● This standard is relevance because it focuses on wireless communication. 

In this project, the team had a backend that communicated with the 

remote-controlled quadcopter with the ground station, which means 

wireless communication and data transmission. 

 

2. IEEE 1687-2014: IEEE Standard for Access and Control of Instrumentation 

Embedded within a Semiconductor Device 

● This standard is about accessing instrumentation embedded within a 

semiconductor device, which is precisely what this project focuses on: 

integrating and improving a quadcopter's embedded systems. 

 

3. IEEE 1936.1-2021: IEEE Standard for Drone Applications Framework 

● This standard is about frameworks for the support of drone applications. 

This project emphasizes working with drones (quadcopters) and their 

flight control systems. 

 

These standards were chosen due to how this project, which is building and/or 

implementing a control system into a mini quadcopter, utilizes remote control through 

wireless devices, accessing the quadcopter itself for data, and reiterating the fact that this 

is a drone device that the team is using. 
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Some of the other possible standard choices that the team did not choose were 

battery standards. The team did not use these standards due to them being rather broad 

and rather nonspecific to this project, for the most part, due to them being a far more 

secondary aspect, in comparison to the chosen standards, which are undoubtedly more 

related 
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3 PROJECT PLAN 

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES 

 

The team adopted a waterfall-agile hybrid methodology. The project is broken 

down into different phases to guide the general path for the rest of the project. The 

different phases include MP4, Backend, and Frontend. To effectively distribute work and 

manage deadlines for these different phases, the team adopts the Agile methodology to 

allocate tasks and issues. 

 

Progress throughout the course of this project has been documented through the 

use of GitLab issues.  GitLab issues were used to designate tasks for each team member 

and provide a timeline for what was needed to work on.  This is how previous teams for 

this project have tracked progress, and the team will follow suit. It is also helpful to track 

deadlines and motivate/keep track of team members to work on a specific issue before it 

is due. 

 

3.2 TASK DECOMPOSITION 

● Documentation 

○ Progressive throughout 

● MicroCART 
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○ CPRE 488 - MP 4 (aka Lab 4) 

■ PID Research 

■ CrazyFlie 

○ Backend  

■ CPRE 488- Framework 

○ Frontend 

■ GUI & CLI 

○ Communication  

■ CrazyFlie Adapter 

■ CrazyFlie Ground Station 

○ Global Positioning Control 

○ Test Stand  

● Semester End Presentation 

 

 

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA 

Milestones: 

MP-4 compilation: 

● Since it is based on an existing lab, it is easy to compile all the documents.  The 

goal is 100% completion, but not making a lab document that a student must 

submit.  

Understanding the backend (Big picture): 
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● This involves understanding how the system works from a high-level perspective. 

It is quantifiable by the ability to explain what each component is and its purpose.  

Dive into sub-components of the communication pipeline: 

● Expanding on the last milestone, the team then needs to gain a deeper 

understanding of each subcomponent. This is quantifiable in a similar way. 

Optimize issues with the GUI: 

● There are issues within the GUI that affect the ease of use. While it is functional, 

there are prominent bugs that should be addressed. This is measurable by the 

number of bugs encountered during a session. The team aims to attack the most 

common ones to reduce the debugging time for students.  

Add Global Positioning: 

● This is a new feature the team will be adding to the 488 lab. This would need 

some involvement from Dr. Jones to tie it to the 488 curriculum. To measure this 

would lay the groundwork for other teams to build upon. The best outcome would 

be to implement the feature and thoroughly add it to the lab.  

Implement Test Stand 

● The test stand is an Arduino that connects to the backend via a serial connection 

that provides third-party roll, pitch, and yaw sensor values to assist in tuning the 

PID controller. The test stand provides the students with an additional set of 

sensor values in addition to the onboard sensor values from CrazyFlie, which will 
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assist them in deducing the parameters of the PID controller. The team’s plan was 

to connect this test stand to the backend. 

Performance Optimizations 

●  The team improved the overall performance of the ground station, backend, and 

GUI applications by reducing CPU consumption from 100% to 60-70%, which 

led to a drastically reduced number of VM (Virtual Machine) and application 

crashes.  

Lab Documentation 

● The team also improved the documentation presented in MP-4, such as the lab 

manual, by removing legacy documentation that is not present in the current 

implementation and reorganizing the verbose document.  

Explore FlyPi: 

● This is a stretch goal in the experimental portion of the project, the previous teams 

were doing some fairly complex stuff. A reasonable goal for the team would be to 

organize better what already exists. The best outcome would be to expand upon 

what the last group left.  

Pick up where the last group left off (FlyPi): 

● This is expanding on the last milestone. The actual contents of what is achievable 

are unknown at this point, as the team has not completed the exploration yet.  
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3.4 PROJECT TIMELINE/SCHEDULE 

Note:  

● Subtasks are other colors of the same group  

● Associated tasks are worked on while working on the task itself 

First Semester 

 

Second Semester 
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3.5 RISKS AND RISK MANAGEMENT/MITIGATION 

Risk Scale: 1 (Low) - 10 (High) 

Backend CprE 488 framework/ CprE 488 MP-4: 

(2) Low risk: 

● The team is working to optimize the existing solution. There are some bugs 

present that could hinder students' progress in MP-4. The risk is low because the 

team can always revert to the previous version that contains minor bugs. 

● Mitigation: do incremental solutions so that if the team has trouble with one 

aspect, it doesn't affect others.  

 

Ground Station and Adapter: 

(1) Low risk:  

● This was requested from the previous senior design team. They wrote the 

software to communicate with the crazy file through the crazy radio. In that 

pipeline, there is an intermediate component, the adapter. They mentioned that the 

ground station should absorb this. It works as is, but it might help speed up the 

communication pipeline.  

● Mitigation: This is more just ensuring that performance does not diminish and that 

the result is more readable to next year's team. 

Global Positioning: 

(7) Medium risk.  

● This is a familiar feature; therefore, the teams would be building it from the 

ground up. It would be a rewarding aspect of the project. But the risk is that the 
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team does not get it done in the time allotted, and then would have to pass it to the 

next team, which could lead to miscommunication or abandonment of the feature. 

 

● Mitigation: makes sure that the team documents their intentions and progress to a 

degree where, if the team does not finish, the next group will be able to pick up 

where was left off quickly.  

 

Deployment: 

(9) High risk  

● This is the final deployment of the VM containing the revisions. At the end of the 

year, the team will want changes to be deployed across all 488 lab machines. 

There is a reasonable concern that if there is an issue, there would be little time to 

fix it. Therefore, none of the changes would take effect for the 488 lab.  

● Mitigation: Do a test deployment beforehand to identify potential issues. 

 

The highest risk task that the team had identified was the deployment of the MP4 

lab.  Now that this has passed, the team has been able to mitigate the risk and has not had 

too many issues come up.  The way that the team has done this has been by acting as TAs 

during the lab sections to help fix any bugs or issues that a student may run into.  Another 

way is by making sure that the team is quick in sending out updates through the Discord 

channel that the students use and by making small revisions to the MP4 Lab manual that 

may be confusing or misleading.  The team has also been able to do a good job at 

maintaining the health of the quadcopters and ensuring that there are enough quadcopters 
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in the lab for everyone to be able to have access to a drone.  An additional risk for 

deployment was the addition of the test stand tracker and how this was going to be used.  

This is a risk because there is an error where if the test stand is not disconnected or 

dismounted from the virtual machine before closing the GUI, the whole system will 

crash.  This is something that the team has been able to mitigate by emphasizing in the 

lab manuals that this will lead to a crash, and also went over this in the lab section before 

students started using any of the technology. 

 

3.6 PERSONNEL EFFORT REQUIREMENTS 

4 Group Members - Expecting a minimum of 6 hours per week from each person  

Note: The estimated hours that are used are the value of the largest amount of time 

expected to be spent on a task, even though from the Gantt chart on 3.4.) Overlapping of 

multiple tasks on various weeks can be seen, so even though estimated hours/week/ 

individual is 6 per say, then during the following weeks, less time will be dedicated to the 

task.} 

[Hours Total Formula]: Duration x Estimated Hours/Week x Number of individuals 

Estimated hours Formula:  [Hours Total] / 4  / 12     

(Rounded up due to 3 weeks of solely research) 
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First Semester 

Tasks Duration (Weeks) 

Estimated  

(Hours/week) 

[Per individual] 

Hours Total 

(Hours) 

[Sum of all team 

members] 

Documentation & 

Research 
14  2  96 

Backend 

CPRE 488- 

Framework 

5  – – 

CPRE 488 - MP 4 5 6 120 

PID Research 4  2 32 

CrazyFlie 9 – – 

GUI & CLI 4 3 48 

Communication 

(Adapter & ground 

station) 

5 - - 

CrazyFlie Adapter 3 4 48 

CrazyFlie Ground 

station 
3 4 48 

Global Positioning 

Control 
2 3 24 

Semester End 

Presentation 
3 3 48 
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Estimated Total 

Duration 
12 ~10 

464 

~116 per individual 

 

[While the above is a calculated estimate, a more likely approximation is 80 total hours 

and 8 hours/ week after accounting for time overlaps, division of work, and breaks] 

 

Second Semester 

Tasks Duration (Weeks) 

Estimated  

(Hours/week) 

[Per individual] 

Hours Total 

(Hours) 

[Sum of all team 

members] 

Documentation 17 2  136 

Performance 

Optimization 
3 5 60 

Test Stand Connection 5  3 60 

Test Stand Logging 5 3 60 

Scholar’s Day 

Preparation 
5 2 40 

MP-4 Testing 3 2 24 

MP-4 Deployment 3 2 24 

MP-4 TA 3 4 48 
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Semester End 

Presentation 
3 1 12 

Estimated Total 

Duration 
14 ~8 

464 

~112 per individual 

 

[While the above is a calculated estimate, a more likely approximation is 80 total hours 

and 8 hours/ week after accounting for time overlaps, division of work, and breaks] 

 

3.7 OTHER RESOURCE REQUIREMENTS 

Some non-financial resources that this project has utilized include knowledge 

from the preceding groups and the code repository, virtual machine, and a BitCraze 

CrazyFlie information sheet that will record the state of lab equipment. Quality assurance 

is checked by both the team and their advisor to ensure that it works to the expected 

specifications. 
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4  DESIGN  

4.1 DESIGN CONTEXT 

4.1.1 BROADER CONTEXT 

The MicroCART team set out to improve the usability of the MicroCART 

application for the CprE-488 lab.  This became a priority for the team due to the 

ramifications of a faulty application that is intended for students to use in the lab. When 

the team first started to get acquainted with MP-4 issues, the team immediately noticed 

some small quality of life issues that could be forgiven, but a couple of major issues that 

directly hindered the team from doing the lab. It was the major issue that the team 

focused on. From a student perspective, the course material is hard enough, but to also 

have to battle faulty software is unacceptable. There were two main issues that the team 

set out to fix. 

The first issue noticed was that the application would bog down the virtual 

machine, which led to the loss of communication between the application and the drone. 

This lab involves the flight of the drone, so constant disconnections resulted in the 

inability to fly the quadcopter confidently. Even on the less consequential portions of the 

lab, where the drone is tethered down and the students are meant to observe the drone’s 

movement and tune the drone's PID values accordingly, led to an external source of error 

that was not the fault of the students.  
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The second issue was the unfinished implementation of the test stand. Previous 

teams had designed a 3D-printed test stand that contained an integrated rotational sensor. 

This sensor enables the student to check the drone's self-estimated parameters with an 

external sensor. But the final piece of the puzzle was missing. To fully utilize this, two 

connections needed to be made. The first was to use an Arduino to digitize the analog 

data from the rotational sensor. The second connection was from the Arduino that 

packaged the rotational data and relayed it to the backend via a serial connection. This 

would then enable students to use the test stand sensor. This was one of the team's biggest 

priorities due to the progress the previous team had made.  

Area Description Examples 

Student 

Considerations 

The design is intended for students 

who are learning a new subject, 

and for them, it is frustrating 

when, along with the challenge of 

learning, they are also having to 

do so on unstable software.  

If a student were in the middle 

of one of their first test flights 

and the drone lost connection 

momentarily, it could lead to 

unexpected behaviour, no fault 

of the student's.  

Servisablity As this design project is an 

ongoing project, a future team will 

likely have to work with or, at the 

very least, read the code. So it is 

the team's duty to make sure it is 

readable.  

When looking through the code 

base for the first time, it can be 

quite daunting, there is likely a 

lot of stuff never seen before. 

But if there are no comments or 
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supporting documentation, this 

compounds the issue. 

Safety This design is centered around the 

use of a drone. There is the 

potential of bodily harm to 

students. This makes it vital to 

clearly instruct the student on 

safety procedures.  

If the lab document is not clear 

about how the drone should be 

tethered down during initial 

testing, the drone could fly into 

someone's face. 

 

 

4.1.2 PRIOR WORK/SOLUTIONS 

The MicroCART project has been ongoing for many years, but the MicroCART 

mini aspect of the project has been active for about six years, when the CPR E 488 class 

was revamped due to technological advancements and started to move away from large 

and dangerous quadcopters. The teams from previous years have designed many of the 

class materials, ranging from the classroom GUI used in their MP-4 to the lab documents 

and even the custom 3D-printed mini-quadcopter testing stands, which are used 

frequently in the later parts of the lab. 

But how does their project compare to similar products (mini quadcopters)? To 

answer that, one must first examine some of the mini quadcopters available on the 

market. The products utilized for this explanation include the Kopis Freestyle 4-inch FPV 
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Drone[5], the DJI Mini 4 Pro Drone[6], and an “Open source ESP32-based quadcopter 

made from scratch”[4], which was assembled from individually sourced components by a 

professional in the fields of computers and robotics. The Kopis Freestyle 4-inch FPV 

Drone[5] is a mini quadcopter equipped with a first-person camera, though it has a short 

flight time of five to six minutes unless upgraded with a better battery. The DJI Mini 4 

Pro Drone[6] is a relatively large mini quadcopter with a longer battery life of 34 

minutes, or 45 minutes with the battery upgrade, a more crash-resistant frame, and a 

camera with night vision. However, these advantages come at the cost of a significantly 

higher price ($759 without upgrades) and a weight of 249 grams, just one gram shy of the 

250-gram threshold, at which point any drone must be registered with the FAA (Federal 

Aviation Administration)[3]. The mini quadcopter most similar to their project is the 

“Open source ESP32-based quadcopter made from scratch”[4], which is composed of 

individual parts that are all detailed alongside sourcing information. This drone prioritizes 

stability and was demonstrated to fly quite steadily. 

Some aspects that make the MicroCART project unique compared to these mini 

quadcopters include how their GUI interacts with the CrazyFlie to transmit commands 

and receive data, as well as the presence of a custom test stand that allows for the testing 

and configuration of the drone’s flight capabilities while preventing accidents. Most 

drones on the market are connected to a limited piece of software, with only the 

open-source drone allowing for easily customizable firmware. Unlike the other 

open-source drones, however, CrazyFlie is an open-source quadcopter from BitCraze[1], 

a company that sells both the drones and the equipment required to communicate with 
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them, while also providing troubleshooting software that can be freely downloaded to 

repair firmware in case of microprocessor errors caused by crashes.  
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4.1.3 TECHNICAL COMPLEXITY 

The addition of the test stand data at the students’ disposal was the most complex 

feature the team implemented. This feature allowed students in the lab to pull from 

multiple sources to more confidently work through the lab. Piping data from an analog 

sensor to a graphical display on a separate system is what leads to the complexity of this 

feature. Below is a diagram of the pipeline. 

 

 Above is an overview of only the test stand data pipeline. In this one pipeline, 

many disciplines are tested. Start at the rotational sensor, which could be thought of as a 

high-precision, low-friction potentiometer where Vdd and GND are supplied to the 

sensor, then through the use of the Arduino's analog pins, a third SENS line can be 

sampled to determine the rotation.  
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Now the Arduino takes this voltage reading from the sensor and passes it through 

a function to convert the voltage to radians. This function only provides the angle of the 

sensor, but a key data point needed during the lab is the rate of change. This is where the 

Arduino’s onboard timer plays a vital role, with the ability to calculate the delta time, the 

rate is then able to be calculated. The Arduino now contains both data points, but must 

wait for a request from the backend before sending the most current data points. 

Within the backend, a dedicated thread is assigned to making connections to 

external sources, primarily the drone. Responsibility for binding to the Arduino was 

given to this thread. Once a secure connection is made, the thread first requests drone 

data, then requests the test stand data from the Arduino. These two sources of data are not 

received in the same format for the GUI to read. This is where the log file handler takes 

over and formats the requested data into a single line and writes it to a log file.  After data 

is written to the log file, the GUI reads the new set of data points and plots them to a 

graph that utilizes QT Creator’s plotting framework.  

This pipeline tests multiple disciplines by containing 3 coding languages, both 

analog and digital interpretation, and many different development and testing techniques. 

But by far the most challenging aspect is the timing. This whole pipeline is on a strict 

timeline for visual clarity; the drone and test stand data need to be aligned so that they are 

both representing the same point in time.  
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4.2 DESIGN EXPLORATION 

4.2.1 DESIGN DECISIONS  

One of the initial ideas the team had was to streamline the data to the plotter, This 

would require reworking most of the existing framework that had been built over the last 

couple of teams. This would allow the data pipeline to have a greater data rate, resulting 

in a smoother plot. The next big design decision was not to scrap the previous team's 

work but rather improve upon it so as not to create more work for the team than needed. 

There are many negatives to doing this, but the benefits are that the team is able to focus 

on key issues rather than building up a new code base with potentially more issues. A 

more focused design decision was hardware-oriented. It was to solve a known issue with 

the Bitcraze drone; the solder joints of the battery connector are very prone to breaking. 

This would extend the lifetime of the drone before maintenance is required.  

 

4.2.2 IDEATION 

For the decision to address the flaw in Bitcraze’s CrazyFlie design. This pertains 

to the eventual break of the battery connector's solder joint. This break will occur due to 

regular use in the lab far quicker than seems acceptable. The first solution is to cut the 

broken cable, clean the old solder off the PCB, and re-solder the same cable back to the 

drone.   
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The next solution was to buy new cable assemblies that allow for longer cables 

that would take some of the strain off the solder joint.  

The team explored the idea of designing a 3D-printed sled system that would 

contain the battery; this sled system would remove the need for a wired connection in 

favor of a guided connection. 

Next, the team simplified the previous idea and looked to see if any of the header 

pins on the drone were Vdd and GND. This would then allow for daughter boards that 

would carry the battery and supply the drone power through the header pins.  

The last idea was to use the same specification of male connector as the wired 

version, but get a through-hole component that we could solder directly to the board, 

which would have a much stronger connection that would stand up to wear and tear.  

 

4.2.3  DECISION-MAKING AND TRADE-OFF 

This problem started to become evident at an inopportune time for the team. Time 

was a big concern for the solution we picked because the lab that needed the drones was 

two weeks out from when the idea was picked.  

 First idea, to just cut clean and re-solder the same cable back to the drone. This 

was by far the quickest solution, and likewise was held fairly high on the list. But it came 

with many drawbacks, the first being that the final cable is smaller, resulting in more 

41 



 

strain on the solder joining, which results in it breaking faster. The next drawback is that 

there is potential damage that can be caused to the drone's PCB. 

The idea to buy new cable assemblies that would provide the drone with a longer 

battery connector is ideal; the cables are available online, and the implementation would 

be staggered. Whenever a solder joint fails, a longer cable would be attached. To meet the 

time constrain, the cables were available on Amazon Prime, with 2-day shipping. 

 The sled idea didn't get much traction. It would involve quite a bit of CAD time to 

first design and more than likely multiple revisions of 3D printing. This would be a huge 

time sink that wouldn't be guaranteed to work. This would be more suited for next year's 

team when they have months to develop the design.  

 The daughter board is a good idea in concept, but none of the header pins were 

mapped to Vcc, so it was instantly out.  

 The last idea was to acquire a through-hole connector that would be soldered 

directly to the drone's PCB. This had some traction because of the ruggedness it 

provided, but the availability of the connectors wouldn't meet the time constraints 

present. Therefore, this solution is relegated to a future team.  
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4.3 FINAL DESIGN 

4.3.1 OVERVIEW 

As this project is built upon year by year from each MicroCART team, the entire 

design from the ground up is not completed in one year. The current revision of the 

project started in 2019. The first 3 years of this revision were spent building the core 

framework of the application and designing the CprE 488 lab. The next two teams 

expanded functionality and worked to make the framework more robust. The current 

team they are picking up the project in the second half of its lifespan. This is where the 

final implementation of features and the polish is applied. 

 There are two large-scale aspects that the team accomplished. The first is the 

integration of an external test stand to provide data that isn't directly reported from the 

drone itself. The reason this is important is that when writing software for the drone, the 

drone's self-reported data, such as its rotational speed and angle, is not always reliable. 

This may stem from an error in the student software or a faulty sensor on the drone. But 

having an external source to validate the drone's self-reported data allows the students to 

confidently determine if the software on the drone is working accordingly.  The second 

large-scale aspect the team accomplished fell into the polish category of work. This 

entailed improving the efficiency of the application that students will have to use. 

Through the use of rigorous code evaluation, many sections of the code were altered to 

use fewer resources. The functionality of the code remained intact, but it lowered its 

consumption of vital computing resources. The reason this is important is that the 
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application runs on a virtual machine, which is analogous to running a computer 

simulation on a computer. This means the virtual machine is allotted far fewer resources 

than the machine which the virtual machine is running on.  

  

4.3.2 Detailed Design and Visual(s) 

 Starting with the test stand data, the team's goal was to display the data from the 

integrated test stand to the applications plotter. While this would be trivial to do in a 

stand-alone application, the real challenge was navigating the existing framework that 

was set up to only display data from the drone. Taking a deeper look at the pipeline that 

was constructed, first, look at the sensor. 

 

Figure 4.1: Test stand sensor 

This rotational sensor is embedded into the test stand. The sensors are interacted 

with through the use of a drone holder that locks the drone to a single axis of rotation. 
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The drone holder fits over the sensor probe and allows the sensor to read the exact 

rotation of the drone on a given axis.  

 

Figure 4.2: Drone holder 

This sensor is analogous to a potentiometer in how it behaves electronically. 

Mechanically, the sensor has very low friction to not introduce large amounts of error into 

an already delicate system. The sensor has a three-pin interface like most potentiometers: 

Vcc, GND, and Sense. Vcc is the upper bound voltage, and GND is the lower bound 

voltage. This sets the range for the Sense pin, which is where the rotational data is read.  

To interface with this sensor, the easiest way is to use an Arduino Nano, the 

Arduino has all the features necessary to provide Vcc and GND as well as read an analog 

signal.  
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Figure 4.3: Arduino Nano with analog pin VCC, GND, and Sense 

The Arduino contains just enough computational power to act as an interpreter for 

the sensor. An analog signal can't be given directly to a standard PC, this is why it is a 

vital component. The Arduino is able to take the analog data and convert it to digital data 

that can be transmitted via a USB serial connection. To convert the analog signal to 

digital. By enabling the analog pin in the firmware, it passes voltage through its 

integrated ADC. This allows the team to write firmware for the Arduino. Now, within the 

Arduino firmware, the voltage Sense pin is a float primitive that interacts nicely with 

code.  A simple C function is used to convert the voltage to radians. The radians are then 

converted to degrees for easier human readability.  
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Figure 4.4: Function to convert voltage to radians 

The next piece of data needed is the rate of change in degrees per second. This 

requires a time component. Another reason for using an Arduino is that it contains an 

onboard timer that allows for the use of delta time. In this case delta time is the time in 

seconds for one loop. By having the difference in time between two angle measurements 

and the difference of the two angles, the rate of change is now available to report.  

 

Figure 4.5: Function for rate calculation 

 These calculations happen as fast as the Arduino can process them to 

communicate over a serial port. During each loop, the Arduino checks to see if a request 

47 



 

has been made from the ground station; if so, it packages the two most current data points 

and transmits them over the serial port.  

 

 

Figure 4.6: Requesting and sending data 

 The data has now been packaged into a universal format, the MicroCART 

application can now be addressed. To reiterate, the team was working with a framework 

that was not intended for this type of integration. In lieu of rewriting the ground station 

that facilitates the transmission and reception of data to the radio, which in turn 

communicates to the drone, the team decided to make due and fit it into the existing 

framework.  

 Starting with the ground station as a whole, the two threads that pertain to this are 

the connection thread that is used to communicate with the drone radio and the logger 

thread that is used to read the drone's reported data and format it into a log file. The initial 

thought is to set up the serial communication in the connection thread, but this thread 

specializes in communication with the drone. So the serial connection was created in the 

log handler thread.  When thinking in terms that the serial connection is just another set 

of data points it makes sense to set it up there. 
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 This is where things get a little tricky. The logger was never intended to receive 

external data other than the data of the drone; therefore, the format of the log file is 

entirely dependent on what the drone says it is reporting. So, to allow for this external 

source, we had to tell the drone to log the test stand data. The drone has no concept of 

what that data is other than it being a float defined in its firmware. The drone has no way 

to get this data; therefore, it responds with empty data. This was necessary for the log file 

handler to reserve space for the test stand data. 

 

Figure 4.7: Creating test stand logging variables 

 

Figure 4.8: Log file header 
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Now that space is reserved in the log file, the data is intercepted before it is 

formatted, and the serial port is polled, and the data is applied there, overwriting the 

empty data from the drone. The formatted string is then written to the log file.  

 
Figure 4.9: Log file data 

 

As the log file handler is writing lines to the log file, the GUI application follows 

along, reading each new line and parsing it to find the selected variables for plotting, then 

takes the values in the position of that desired variable, the position is defined by the 

header. The QT plotter framework then takes over from there to plot the data on the graph 

in the GUI.  
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Figure 4.10: Plotter 

The other large contribution was in the form of improving the efficiency of the 

code. Originally, the functionality of each sub-system was sound. But when put together 

is a real-world application, all the minor inefficiencies add up to create an unstable 

environment.  This is primarily due to running on a VM where resources are limited, and 

depending on the host machine, not enough resources are available to the VM to keep up 

with its consumption. This led to the VM’s CPU utilization consistently reaching over 

100%, meaning that processes were being stalled.  
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Figure 4.11: High CPU utilization 

The first improvement to the code was finding out about the overuse of busy 

waits; the ideal use is none, but it's understandable when testing the sub-systems 

individually, the busy wait doesn't seem to have a dramatic effect on performance. But 

when multiple systems are busy waiting, they eat up CPU utilization, literally doing 

nothing.  

 

Figure 4.12: Busy-wait 

The second improvement was achieved by finding a misconception that had 

permeated for a couple of years. When logging, there is fine-tuning of how often the data 
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is sent from the drone to the ground station. This variable is the period of the data 

transmissions. This had been treated as a frequency. So when previous teams were 

running into this high CPU utilization, they would lower what they thought was the 

frequency of data, but in fact, they were increasing the frequency of data. Once this was 

realized, the team corrected the documentation, instructing users to do the opposite of 

what truly needed to be done. The team also found a stable logging period that shouldn't 

need to be changed. 

 

4.3.3 Functionality 

As this project revolves around the CprE 488 lab, our implementations were 

directly used during our final semester. This allowed us to get crucial feedback for 

overlooked errors in the lab manual and many quality-of-life improvements from the 

students.  

 As students in the lab, their first interaction with material created by the team was 

the MP-4 manual that first gives the students a rundown of the hardware involved such as 

all the features of the drone, how to connect a battery and power it on, as well as the new 

edition of the test stand. The test stand portion was entirely written by the team because 

of the new external sensor that could now be displayed in the application.  

 The success was measured in the lack of negative feedback rather than 

overwhelmingly positive feedback. It may seem weird, but the student doesn't know how 

much the overall performance has increased when they never had to experience all the 
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issues that came along with the previous year's revision. As for the test stand sensor, it 

was put to use and proved useful for some students during part two of the lab, where they 

were writing their own firmware for the drone.  

 

 The actual use case of everything implemented by the team is laid out in the MP-4 

lab manual (Appendix 1). Other than the test stand, the interaction with the improved 

efficiency is the lack of frustrating of having the connection drop mid testing, and 

according to Dr. Jones, last year this was the source of a major headache. But this Year 

the problem was gone, it didn't happen to anyone once.  

 

4.3.4 Areas of Challenge 

 One of the challenges that the team faced in implementing our design was 

determining which piece of code logs and graphs data, and how it does it. By 

back-tracing the GUI code, the team was able to follow the execution flow of the log file 

handler Python script to understand how it was able to log to and graph from a log file. 

Multiple challenges arose as the team continued with test stand implementation. For 

example, the log file was unable to log more than 12 logging variables because it was 

hard-coded by the previous team.  

Besides that, the team was struggling to get the test stand angle and rate to show 

up as a logging variable for the purpose of graphing those values on the GUI. In the end, 

the team consulted their advisor, Dr. Jones. The team followed his advice and traversed 
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through CrazyFlie’s firmware and found a way to add dummy logging variables to the 

CrazyFlie as a way to get it to show up in the log file, and it succeeded. 

 

4.4 TECHNOLOGY CONSIDERATIONS 

 In our project, we are utilizing the following technologies: 

● Virtual Machine      (Software) 

○ Project environment and means of deployment  

○ GUI & remote connection 

○ (-) Prone to connection issues even with simple USB inputs 

● CrazyFlie - BitCraze’s mini quadcopter model  (Hardware) 

○ Open source software and hardware for CrazyFlie 

● Network technology / Radio Communications   (Hardware) 

○ The wireless communication method 

● Microcontrollers/Low-level programming   (Hardware/Software) 

○ Drones onboard software 

○ (-) Limited potential 

● PCB fabrication      (Solution) 

○ Battery retention 

● Test Stand       (Hardware) 

○ Arduino 

○ Rotary encoder 
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The hardware is a set standard that we are unable to change in the MicroCART 

project. Save for maybe the exception of the ‘battery retention racks’ or lack thereof, that 

can be remedied by adding PCB-fabricated designs, which can then be attached to the 

CrazyFlie. The virtual lab environment that is available on the CPR E 488 class website 

is what will be changed. Specifically, editing the code that is part of the lab environment 

download for the CPR E 488 MP-4 lab. Utilizing a custom GUI made by previous 

groups, we have to look through how they made it while we were editing it. The 

CrazyFlie mini quadcopter is a relatively inexpensive mini quadcopter and as such has 

small equipment with limited possibilities. In order to communicate with the lab drones, a 

USB radio is used to communicate with the CrazyFlie, though the radio can also 

communicate with other equipment that is available in the lab, such as sensors, which can 

then be fed back to the CrazyFlie and enable more advanced flying methods. Since it has 

been decided that this year’s MicroCART team cannot change the hardware, the only 

changes they could make are through the software, unless they were to choose to start 

from scratch, but due to the limited timeline, it would be very unwise to choose to do so. 
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5  Testing  

5.1 UNIT TESTING 

Our infrastructure has several software components, allowing us to perform unit 

tests on each of the parts individually to ensure that the system as a whole is working 

properly.  These components include the front-end GUIs, the backend modules, and the 

ground station.  The GUIs can be tested by entering inputs and verifying that the correct 

outputs are there and that the correct thing is sent to the terminal.  The backend and 

ground station are more complex to unit test as one component, so this can be broken 

down into smaller components that can be tested manually through checking terminal 

output. 

Besides that, the team conducted unit testing on the test stand Arduino because 

the default .ino code given was from a previous team that had failed to implement it. 

Through streamlined debugging, the team tested multiple test stands to ensure that the 

rotational angle and rate provided by the sensor are correct. The team then compared 

these third-party sensor values to the CrazyFlie’s onboard sensor values to determine if 

they are valid. 

 

5.2 INTERFACE TESTING 

Interface testing would be more critical to our design due to the level of 

complexity in communication between different components. Since we will not be 
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rewriting the firmware code for the CrazyFlie, we will not need to test the interface 

between the open-source CrazyFlie and Crazyradio. Therefore, we would need to go 

through a thorough testing for the rest of the components, which are the backend and 

frontend communication via UNIX sockets. Our method of testing involves inserting 

print statements when each process sends and receives a message, as well as outputting 

the outputs to a file for debugging purposes to ensure that data is correctly getting passed, 

which can be done easily with IDEs like Visual Studio Code. 

Besides that, a method of interface testing that the team has adopted is inserting 

logging variables into the firmware of the CrazyFlie so that external values such as the 

test stand angle and rate data could be plotted on the graph. This allowed the team to 

firmly determine if the overall test stand implementation is working. 

5.3 INTEGRATION TESTING 

Integration testing will be similar to our interface testing, such as running the 

components bit-by-bit/individually and not as an overall large component, and generating 

tests that will ensure the same output is generated when certain inputs are entered, which 

can be easily done through the GUI or through some effort through the CLI. 

5.4 SYSTEM TESTING 

After each component is tested individually, we will move on the test the entirety 

of the system altogether while running the tests with a CrazyFlie drone and conducting 

Lab 4 step by step. Through the use of our clearly provided documentation of Lab 4 as 

well as the GUI, we would be able to complete Lab 4 without encountering any errors or 
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bugs, while improving any quality of life issues that arise. This is primarily done before 

deployment. The team conducted system testing on three different lab computers in 

Coover 2041 simultaneously to ensure that conducting MP-4 concurrently would work, 

as we are dealing with radio and packet transmission. 

5.5 REGRESSION TESTING 

MicroCART is based on updating and fixing up the work from teams as far back 

as 6 years ago. As the project is in an already working state, what we need to do is 

improve the project and make sure all pieces are working together, just like, if not better, 

than before. We are ensuring that new features do not break the old functionality by 

utilizing observe, test, check results, repeat the first three as needed, and finally push the 

solutions to a development branch for further testing with the other group members’ 

work. By utilizing this process to test for breakage along with utilizing Git to observe 

changes that occur in the workspace, and backtrack when an update breaks something 

despite testing for otherwise, we are able to ensure stable testing and improvement. 

5.6 ACCEPTANCE TESTING 

The first step of acceptance testing is to ensure client approval, which is 

accomplished by consulting our advisor, Dr. Jones, before deploying the software for lab 

use. If we are given the green light by Dr. Jones, we would continue with the deployment 

and the actual delivery of  MP-4. We would then request feedback from students and 

compare it with last year’s lab feedback to deduce if there was an improvement in the 

overall quality of the lab and their experience. Overall, the team received mixed reviews 
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from the students, but almost none of the bad reviews were on the features that we have 

implemented, but multiple other issues that have suddenly popped up or existing issues 

that the team has yet to solve. 

 

5.7 USER TESTING 

Before deployment, the team would act as if they were CPRE 488 students and 

perform MP-4 while using the current implementation. If a majority of the team comes to 

an agreement, they would reach out to the current TA (Teaching Assistant) of CPRE 488 

and a past student of CPRE 488 to have them assist the team in performing MP-4 while 

forcibly finding edge cases that the team has overlooked. Overall, the TA has found 

several issues regarding the current implementation, one of which is that the team 

accidentally included answers for the PID values for Part 1 of the lab. These issues were 

fixed, and MP-4 was deployed smoothly. 

 

5.8 RESULTS 

Overall, unit testing allowed the team to avoid making assumptions about the test 

stand implementation that was created by a prior MicroCART team. The team was able to 

pinpoint the problem of the current implementation as soon as they were able to set up 

testing for multiple test stand Arduinos. One of the issues that was uncovered by the team 

was that the yaw rate and angle were inverted if compared to the yaw rate and angle from 

the onboard sensors. 
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Besides that, user testing made a difference in our deployment. The assistance 

from the TA of CPRE 488 helped us achieve a near-flawless deployment of MP-4, with 

the issue being that the TA has found several issues regarding the current implementation, 

one of which is that the team accidentally included answers for the PID values for Part 1 

of the lab. These issues were fixed, and MP-4 was deployed smoothly.  
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6  IMPLEMENTATION 

The team was successful in implementing the test stand, which is one of the key 

components of the final design, and was one of the core features that previous 

MicroCART teams failed to implement. This test stand provides third-party roll, pitch, 

and yaw sensor values, and plots said values to a graph to assist in tuning the PID 

controller, which is the introductory part 1 of MP-4. The test stand assists students in 

deducing the parameters of the PID controller, such as kd, kp, and ki.  

Besides that, the team was able to improve the performance of the VM, which is 

the development platform for MP-4, CPU utilization of the VM was decreased from  

100% to 70%. Performance optimization was also one of our main design requirements 

because previous teams suffered heavy criticism from past CPRE 488 students for the 

numerous GUI and VM crashes they experienced. This was a good implementation by 

the team, as this year’s MP-4 was dubbed the smoothest MP-4 in the history of 

MicroCART.  

One of the features that the team failed to implement was the global positioning 

system (GPS) for the CrazyFlie. This was meant to be used in conjunction with the 

lighthouse system to autonomously fly the CrazyFlie in a 3-D space, maintaining a steady 

flight while receiving the current Coordinates of the CrazyFlie and the coordinates that it 

will be flying to. The team was unfortunately unable to complete this implementation 

because of the difficulty of the implementation and the time constraints faced after 

implementing the test stand.  

62 



 

A solution for how the battery is held on to the drone quickly became an issue 

right before the deployment for the CPRE 488 lab. This causes the team to scramble to 

come up with a solution. The problem stemmed from weak solder joints that would often 

break on drones with heavy use. The main constraint to the problem was time.  

Deployment was in two weeks, so a 3D printed carrier was out of reach with the given 

deadline. This forced the team to use a quicker fix and kicked the real problem down the 

road. A more permanent solution is in the works, but it will have to be finished by a 

future team. This is a known problem, so a solution is vital. Hopefully, next year's team 

can take what has been planned and run with it.  
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6.1 DESIGN ANALYSIS  

 The test stand implementation works well as the yaw, pitch, and roll sensor data 

from the test stand are almost identical compared to the CrazyFlie’s onboard sensor. The 

only issue with this implementation is that students need to disconnect the test stand from 

the VM before closing the GUI application, or else the entire VM will crash. The team 

looked into this and found that the VM cannot handle a sudden disconnection of a serial 

device, which caused it to crash. The team was able to repeatedly mention the idea of 

disconnecting the test stand first before closing the GUI application during the briefing of 

MP-4 with the students and in the MP-4 lab manual. Thus, resulting in fewer crashes than 

normal. 

 The performance optimization implementation worked extremely well; the CPU 

utilization of the GUI dropped from 100% to 70%, which reduces the number of crashes 

due to lag and unresponsive applications. It is revealed to the team by previous CPRE 

488 students and their advisor that MP-4 works better than before, as there were 

significantly less number of GUI and VM crashes. 
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7  ETHICS AND PROFESSIONAL RESPONSIBILITY 

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS 
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One area that this team has done well is work competence. This team has 

recorded the individual workloads and reported the individual contributions to the project 

honestly and non-deceptively. An area that they have been working on is the health, 

safety, and well-being of their users, who are students, because the goal of the project is 

to ensure that no users will be harmed while using it. In order to improve this 
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shortcoming, documentation has been utilized by the team in order for emphasis to be 

made in regard to certain tasks or risks. In case any other issues come up, this would be 

the solution that is utilized and recommended by the team for future endeavors. 

7.2 FOUR PRINCIPLES 

 

Four Principles Beneficence Nonmaleficence Respect for 
Autonomy Justice 

Public health, safety, & 
welfare 

The project helps 
improve the learning 

of all who are 
involved 

Design promotes safe 
practices  

(ie, Test Stands) 

Implementation 
provides a 

framework that 
participants are 

expected to 
complete 

Design allows for 
access to all 

parties  

Global, cultural, & 
social 

Brings different 
communities 

together to learn 

Implementation harms no 
one indirectly 

Design does not 
affect cultural 

practices 

Benefits are shared 
equally amongst 

all parties 

Environmental 

Mini Quadcopters 
are small, decreasing 

potential 
environmental 

impact 

Rechargeable batteries and 
non-toxic, minimally 

processed materials ensure 
a low environmental 

impact 

Open-source 
design allows 

replacement parts 
to be sourced 

according to the 
user’s desires 

Implementation 
does not harm the 

environment 

Economic Project teaches 
job-applicable skills 

The project largely uses 
pre-existing open-source 

design parts 

CrazyFlie is an 
open-source drone 
that can be found 
outside the school 

Custom drone will 
not infringe upon 
any private sales; 

CrazyFlie software 
only affects our 

items 
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A broader area context-principle that this team utilizes positively in this project is 

how the open-source origin design allows for the replacement of parts non-limitedly. The 

CrazyFlie mini quadcopter is used by numerous people for testing, ranging from students 

to teachers, in this project’s context specifically. Accidents are bound to occur and 

can/have caused enough damage that mere tape and glue are no longer enough as 

solutions. Since there had been some issues that damaged a drone beyond repair prior to 

the start of the second half of the project, the team has had to look to other locations for 

replacement pieces, ranging from battery holding implements on top of many of the 

drones, new wire connectors, and new batteries. It will be up to next year's MicroCART 

team to find some of these solutions. 

One broader context row that this project is largely missing, or rather lacking, is 

the Global, Cultural, and Social row. Inside this row, many of the pairs involved in this 

row are largely due to the scope of the project, which is limited, more so to the college. 

Different communities are coming to the college to learn equally, while our project 

instead is meant for the audience of a ‘student’ rather than a ‘student of a CERTAIN 

CONTEXT’. Nonmaleficence, Respect for Autonomy, and Justice are all similarly 

passive, with not much being put forward in this context. Thus, while this project was not 

performing in a fashion that hinders this broader context, it is difficult to say that it is 

supporting it, hence, it is a mostly neutral row.  

 This section was updated, but no major changes were made, as the neutrality of 

usage and intention of usage of open-source parts are integral parts of this project. This 

project was and is meant to help students learn more in regard to the topics covered in 
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CPRE 488, and the non-limitation of parts allows students to create custom fixes, 

preventing MicroCART teams from following a fixed path. 

7.3 VIRTUES 

Order, moderation, and resolution[2] are three virtues that are important to our 

team. To the MicroCART team, order meant how the team was to utilize the AGILE and 

Waterfall work methods. By working through items in a predefined manner, the team was 

able to keep track of where they were as a group. Moderation is meant to keep us on 

track, but not go wild and either do too much or do too little. The team each performed a 

moderate amount of work on our own, but when it came to working together they were 

rather lacking, and took more time to learn/check up on what each of us were individually 

working on when it would likely have been more efficient to work as a group for certain 

task items. Resolution, or more precisely, resolve, meant to firmly decide on what they 

would do, before getting into a task and then finishing it, even if it meant having to ask 

questions or learn new but necessary information to complete the task. In the future, the 

team as individuals will be continuing this practice, but will ask fellow team members 

when they come across something that they do not understand, as this would have made 

many work-halting issues be resolved much quicker. 

● Ryan: A virtue that I feel I have demonstrated in this project is perseverance.  

Perseverance is important in projects such as this because there will be times 

when a goal may seem impossible or too hard to achieve.  This project has 

brought plenty of challenges, and I have had to get through these challenges to 

reach our goals.  Another virtue that I find important that I have not demonstrated 
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yet is collaboration and working with others.  I have found it difficult to find time 

and opportunity to work with my team members as much as this project requires.  

This is something that will need to be fixed next semester because it is impossible 

for engineering projects as large as this to be completed by yourself.   

● Daniel: An important virtue that I have demonstrated is clear and thorough 

documentation. Throughout this project, I have been looking through, organizing, 

and writing documents in order to better guide future students and project 

members due to the quite bloated project base that has not really been pruned. In 

comparison, a virtue that I have not demonstrated well is attentiveness to the 

needs of others, which is largely in part due to not working deeply with all of my 

fellow team members, something that our sub-groups will have to work together 

to do as well. Over the course of the second half of the project, I managed to 

improve upon this attentiveness, though the documentation began to fall behind as 

tasks and troubleshooting shot up in importance. 

● Jonah: A virtue that has been important to me has been the willingness to learn. 

This project focused on software development, an area in which I was lacking. 

The ability to recognize what I did not know and strive to research and gain an 

understanding of a subject on the fly has been a constant cycle in the development 

of our project. A virtue that I personally strive for, but regarding this project 

ultimately fell short was time management. I did not spend enough time on this 

project throughout the semester. This will need to be fixed for next semester. It 

will most likely be caused by better personal planning. 
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● Yi: A virtue that I have demonstrated is inspiration and motivation. This is 

important because teams require motivation to work, or they will end up with 

poor work efficiency. What I did was create a Git Issues board and included tasks 

with a deadline that we will follow as a team. A virtue that I think is important but 

have not demonstrated is time management. Fall 2024 has been a very busy 

semester for me. I had bad task prioritization and scheduling that ultimately 

resulted in less work done for this project. In the future semester, I will be taking 

fewer classes and managing my time more efficiently through a task scheduler. 
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8  CONCLUSION 

8.1 SUMMARY OF PROGRESS 

Overall, many of the reasonably accomplishable goals that were revised for the 

second semester were able to be accomplished during the second half of this project. 

These reasonable goals that the team accomplished included fully implementing the test 

stand, connecting the backend, and updating the MP4 documents in order to ensure a 

smooth deployment, while working on the FlyPi drone was a stretch goal.  

For more context, over the course of the first half of the project, August 2024 - 

December 2024, the MicroCART team had a late start and many timing issues, which 

contributed to having a less-than-desirable amount of progress being made. When coming 

up with a new schedule for the second half, January 2025 - May 2025, the team members 

were able to achieve much better meeting times and work efforts because of it. These 

improved meeting times allowed for much better cooperation between the members, and 

after a meeting with their advisor, Dr. Philip Jones, where the new goals and the stretch 

goal were established, the reasonable goals mentioned were able to be achieved. As such, 

the MicroCART team was able to achieve its intended tasks before the deadline. 

8.2 VALUE PROVIDED 

 The updated MP4 items inside this project are the updated MP4 lab document and 

virtual machine/lab environment. The updated MP4 lab document is much improved 

compared to the previous iteration, which had poor navigation (i.e., jumping to the 57th 

page from page 5 with no return jump available), dead links, and outdated or no longer 
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implemented pieces of information. As the team went through the document and lab 

environment, they fixed the previously mentioned issues. Updating the lab environment 

allowed the team to find many bugs due to bad code or overlooked issues from teams 

from previous years, while also providing them an updated way to fix some 

accidental/unintentional hardware issues. In a broader context, updating is what is needed 

to stay up to date with the most improvements while also providing solutions to bugs or 

things not directly tied to performance. Fixing the lab environment allowed the team to 

fix the largest and most common hardware issue plaguing the project, which was a 

firmware error that bricked the system, rendering any drone suffering from it unusable. 

8.3 NEXT STEPS 

The next step that this team is taking is finalizing the handover documents and 

videos for next year’s team. As stated above in the conclusion, this project group did not 

have a smooth start, which limited the amount of success they could achieve. Some of the 

next steps that the team plans to give to future teams are a proper handover document, 

giving direct access to where things that students are looking for can be found. Even after 

the wrinkles of the first semester were smoothed out, there were still many issues with 

finding the information within different parts of the repository and the pre-written student 

documents that had team members having to wait for their advisor to obtain the 

information or simply offer an alternative altogether. In order for future teams to have a 

solid understanding of what needs to be fixed next, such as outdated items in the GUI or 

missing buttons, any tasks unable to be completed in time by this year’s team will be 

recorded with any thoughts going towards how to fix them written in accompaniment to 
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them to give the next team an idea of how to work on this next. Hopefully, this will 

enable the future MicroCART teams to be able to complete the FlyPi design that has been 

in progress for the past few years, but even as of yet, is unable to fly. 
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10 APPENDICES 

APPENDIX 1 – OPERATION MANUAL 

The steps for operating the MP4 infrastructure are laid out best in the version of the MP4 

lab document provided to students.  The lab document is located here: 

https://class.ece.iastate.edu/cpre488/labs/MP-4.pdf.   

A simplified version of the steps will be provided below: 

MP-4 Part 1 

1. Log in to the VM using the Bitcraze account name and password of CrazyFlie.  

Get a CrazyFlie drone and attach a battery to it.  Take note of the number on the 

bottom of the CrazyFlie drone.  Using this number, refer to the CrazyFlie Radio 

Number document provided in the lab document above.   

2. Get the USB radio dongle and plug it into the PC you are connected to the VM 

on.  You should then be able to connect this device to the VM by going to the 

Devices tab at the top of the VM screen and selecting USB.  From here, select the 

Bitcraze AB Crazyradio.   

3. Open up a terminal in the VM and navigate to the 

/MicroCART/CrazyFlie_software/CrazyFlie-firmware-lab-part-1/ folder.  This 

will be the folder where the MP4 lab part 1 is completed, which involves tuning 

the PID controller.   

4. Cd into the /tools/make/config and make or edit the config.mk file.  Add in the 

line CLOAD_CMDS=-w radio://0/<radio_channel>/2M/E7E7E7E7E7, replacing 
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radio channel with the value found above.  Go back to the folder in step 3 and run 

the make cload command in a terminal.  This will flash the CrazyFlie drone with 

the firmware in part 1.  After this is done, run crazycart <radio_channel> to open 

up the GUI that has been created to assist with the lab.   

5. At this point, you have a GUI open that is connected to the CrazyFlie drone.  

From here, you can navigate through the GUI to set PID parameters, fly the drone 

through the Controls page, set the logging parameters in the logging blocks page, 

and assign a controller in the gamepad page.   

6. The first step to tuning is to set parameters and alter these by using the logging 

functionality to fine-tune the correct PID values.  The parameters that need to be 

tuned are in the s_pid_attitude and s_pid_rate groups.  You can either set the 

parameters individually or use the attached JSON file to set the parameters all at 

once, which is recommended.   

7. Now, you will want to attach the CrazyFlie drone to the test stands to be able to 

tune the PID values without the drone actually flying.  Go to the controls page and 

start setting setpoints and graphing the appropriate logging variables as needed.  

Set the thrust and press the “Apply” button to start the drone.  The “Stop” button 

will stop the drone.   

8. After tuning the PID parameters correctly, you should be able to fly the drone off 

the test stand and have a stable flight.   
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MP4 Part 2: 

Step 1: General PID 

Note, for this section, you should use the PID constants you found in part 1 for 

known good values. You can set the default values in the student_pid.h file. 

However, the constants you discovered earlier may have some assumptions built 

in, so it may be necessary to re-tune the controller if a significantly different 

algorithm is used. 

1. The first thing that you will write is a general PID function and struct. The 

PID struct that we provide you will be empty, and you will decide on what 

should be included in it, which is defined in student_pid.h. You are 

encouraged to make as many helper functions as you would like in your 

student_pid.c file to help with roll, pitch, and yaw calculations. 

2. The first thing I would recommend writing is the PidObject struct in 

student_pid.h. This struct is used to hold the data that is used for all 

other PID calculations, so it is required to write many of the other 

functions. 

3. Next, write the basic getters and setters for the PidObject in student_pid.c. 

4. Now we can actually write the PID algorithm in the studentPidUpdate function. 

5. At this point, you should have filled out everything in student_pid.c and 

student_pid.h, make sure all of the “488 TODO” comments have been 

fulfilled in these files. 

Step 2: Student Attitude Controller 
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The attitude controller and attitude rate controller have their main functions in 

student_attitude_controller.c, this is where you should begin working. 

1. Complete the initialization function for the attitude controller. 

2. Implement the student attitude rate controller PID. 

3. Test the rate controller 

4. Next, write the student attitude controller PID. 

5. Test the attitude controller 

6. Then finish the reset PID value helper functions 

7. Finally, fill in the logging parameter addresses. Then, make sure all of the 

“488 TODO” comments have been fulfilled in these files. 

 

Step 3: Student Controller, Bringing it all together 

Now we need to bring everything together in the controller_student.c file. 

1. Start by reading in the setpoints for roll, pitch, and yaw angles as desired 

values. Forthe  mixed attitude mode, the yaw angle should change from the 

current angle based on the rate given. Also, set the desired thrust. 

2. Use the attitude PID controller to set the desired attitude rate to the value 

calculated. If the controller is in velocity mode, overwrite the attitude rates 

with the setpoints provided. 

3. Next, input the desired attitude rates into the PID controller and use the 

outputs to set the command variables for roll, pitch, and yaw. Set the 

output thrust. 
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4. Copy the values into separate variables for logging purposes. 

5. Complete the logging parameters by filling in the addresses. 

 

At this point, you should have filled out everything in all files, and make sure all of the 

“488 TODO” comments have been fulfilled. 

Step 4: Final Check 

● Before you go flying your CrazyFlie for real, it's a good idea to verify 

everything works as intended on the test stand. Attach the drone to the test 

stand and briefly check that all axes respond as you expect. For this step, you 

can use manual setpoints or a gamepad connected to the ground station. See 

here for details on using a gamepad with the ground station. 

● If all looks good, take her for a spin and see how she handles! Be careful of 

others in the lab and try not to crash it too hard! 
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APPENDIX 2 – CODE 

● https://git.ece.iastate.edu/danc/MicroCART  

APPENDIX 3 – TEAM CONTRACT 

Required Skill Sets for the Project 

● Coding Skills (At least one of: Python | C | C++) 

● Networking knowledge 

● Embedded systems 

● Embedded programming 

● Able to utilize Linux / Command Line Interface / Make 

 

Skill Sets covered by the Team 

Green = Have || Yellow = Some exposure || Red = No experience 

 Coding 

languages 

Networking 

knowledge 

Embedded 

Systems 

Embedded 

Programming 

Linux / 

CLI / Make 

Daniel      

Jonah      
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Ryan      

Yi      

Project Management Style Adopted by the Team 

A hybrid method of the Waterfall method and the Agile method for project management. 

Individual Project Management Roles 

● Daniel Zaucha:  Client interaction, Communications Lead 

● Jonah Upah:     Hardware Lead, Team Secretary 

● Ryan Lowe:     Technical Advisor  

● Yi Hang Ang:  Software Lead 

 

 

Team Contract 

Team Members: 

1) Daniel Zaucha  2) Ryan Lowe     

3) Jonah Upah   4) Yi Hang Ang    

Team Procedures 

1. Day, time, and location: Face-to-Face 
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- Wednesday:  11:00 AM - 12:00 PM (Advisor Meetings) 

- Monday: 11:00 AM - 2:00 PM 

- Friday:     1:00 PM - 5:00 PM 

- Sunday: 11:00 AM - 2:00 PM 

2. Preferred method of communication updates, reminders, issues, and scheduling 

(e.g., e-mail, phone, app, face-to-face):    

- Meetings are done in person, unless someone cannot come in person. 

- Discord server set up with all group members to communicate when not in 

person. 

- Discord, Email, Text last resort 

3. Decision-making policy (e.g., consensus, majority vote): 

- Majority votes are required for large-consequential decision-making.  If 

there is no majority or votes are split, we will discuss as a team and try to 

reach a consensus from group discussion over the issue (OR get Dr. Jones 

as a tie-breaker vote). 

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will 

minutes be shared/archived):   

- Jonah or Daniel will set up meeting notes and record action items during 

the meeting. Notes will be kept in a shared google drive folder.  
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Participation Expectations 

1. Expected individual attendance, punctuality, and participation at all team 

meetings: 

- Everyone will be expected to attend scheduled meetings unless 

extenuating circumstances come up.  If this happens, the team member 

will inform the group of this.    

2. Expected level of responsibility for fulfilling team assignments, timelines, and 

deadlines: 

- Everyone should contribute to completing team assignments, ideally 

before deadlines, but preferably a few days before. If someone is not going 

to get something done because of circumstances, be sure to contact the 

group for assistance. 

3. Expected level of communication with other team members: 

-  Discord is how we communicate with each other about meeting and tasks. 

During the working day responses are expected, subject to change.  

4. Expected level of commitment to team decisions and tasks: 

- Everyone puts in an equal amount of time, and thought behind decision 

making. 

Leadership 

1. Leadership roles for each team member: 
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-  Jonah Upah: Hardware Lead, Team Secretary 

- Yi Hang Ang: Software Lead 

- Ryan Lowe:  Technical Advisor  

- Daniel Zaucha: Client interaction, Communications Lead 

- All members work to assist and perform the duties so that the group 

succeeds as a while. I.e. Software lead can still work on the backend. 

2. Strategies for supporting and guiding the work of all team members: 

- The report document will track tasks and time.  

- Meeting will be a place to discuss concerns about the timeline. 

- Report document will also have new issues.   

3. Strategies for recognizing the contributions of all team members: 

- Contributions of team members will be noted on the weekly reports and 

discussed in meetings.   
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