
1

1

2

The name of our project is MicroCART which stands for Microprocessor

Controlled Aerial Robotics Team. This project is divided into two parts. The first part is

optimizing and improving a quadcopter called CrazyFlie which will be used to conduct

Lab 4 of CPRE 488: Embedded Systems Design. This is important because we are

providing a better and more convenient environment for CPRE 488 students to learn. The

second part of this project is implementing and improving on the firmware of a

quadcopter called FlyPi, which is a product of last year’s MicroCART team that will be

used in future live demonstrations during Scholar’s Day at ISU to attract prospective

students. The long term goal of this project is to learn from what was and will be

implemented on the CrazyFlie and further improve on our heritage, the FlyPi.

Our key design requirements would be to improve the backend to frontend

communication and the graph logger of the CrazyFlie to reduce latency by implementing

a new packet in Python which will contain graph logging values. As of now, we will need

to grasp a better understanding of the backend communication before implementation. If

implemented perfectly, this design requirement will provide students with a smooth and

clearer GUI graph logger, which will help students have a better understanding of the

graph.

2

3

Besides that, we plan on implementing a new component called a test stand

tracker for the CrazyFlie. This tracker is an arduino which will provide more accurate

setpoint values of the PID controller. The tracker provides the students with more

accurate setpoints which will assist them in deducing the parameters of the PID

controller. What we are working on right now is connecting the test stand tracker to the

backend.

For the FlyPi, we plan on implementing a global positioning tracking system that

will keep track of the current position of the FlyPi while it is autonomously moving

around the test field. This requirement will be implemented last, therefore we do not

currently possess the knowledge regarding the details of this implementation, but the idea

would be to calculate the distance the FlyPi has traveled in x,y, and z coordinates through

the aid of the PID controller and the IMU (Inertial measurement unit).

3

4

Development Standards & Practices Used

Since this project is mainly software focused embedded programming in C, C++, and

Python, we would prioritize following standard software development standards.

●​ Variable assignments should not be made from within sub-expressions

●​ Class names should comply with a naming convention

●​ Local variable and function parameter names should comply with a naming

convention

●​ Failed unit tests should be fixed

●​ Resulting code causing failed pipelines on Git should never be deployed

Engineering Practices

Engineering standards are essential because they ensure that the products produced by

engineers meet users’ expectations. This means that the product is safe for users, has a

standard or consistent quality, and is environmentally friendly. Adhering to engineering

standards increases work efficiency and speeds up the engineering process. Therefore, the

existence of engineering standards is beneficial to both users and engineers, and these are

the engineering standards that we think are applicable to our project.

●​ IEEE 802.11s-2011: IEEE Standard for Wireless LAN Medium Access Control

(MAC)

4

5

○​ This standard has relevance because it focuses on wireless

communication. In our project, we have a backend that communicates the

remote-controlled quadcopter with the ground station, which means

wireless communication and data transmission.

●​ IEEE 1687-2014: IEEE Standard for Access and Control of Instrumentation

Embedded within a Semiconductor Device

○​ This standard is about accessing instrumentation embedded within a

semiconductor device, which is precisely what our project focuses on

integrating and improving a quadcopter’s embedded systems.

●​ IEEE 1936.1-2021: IEEE Standard for Drone Applications Framework

○​ This standard is about frameworks for the support of drone applications.

Our project emphasizes working with drones (quadcopters) and their flight

control systems.

Summary of Requirements

1.​ Mini Quadcopter should be able to:

●​ Fly smoothly

○​ Flight stabilization

○​ No sudden “random” movements

○​ Quick reactions to directional inputs

●​ Connect to remote equipment for data analysis

●​ Be able to connect to remote sensors and utilize the information to fly

5

6

●​ Be utilized easily even by someone with no prior experience in controlling

any remote control vehicle

2.​ Frontend/Backend should be able to:

●​ Be accessible through the current method

●​ Display data from flight information

●​ Be able to enable an uncontrolled flight via sensor data

3.​ Documentation must:

●​ Explain the steps throughout the project

○​ Plan of action, task breakdown, time taken, changes made form the

previous project, what we could have done better, what we did not

get to and will leave for the following year’s group to complete.

●​ Document any problems that came up throughout the development process

and record how we solved them for future project groups or, when

applicable, by teachers, TA’s and students.

●​ How to solve issues that come up frequently (FAQ Sheet)

●​ Catch users up-to-speed for the programming project depending on their

role

○​ Student, TA, Advisor, Teacher, Successor team, or the general

public

●​ Show and explain how our project connects to various other fields and

draw interest from observers to look deeper into it

6

7

Applicable Courses from Iowa State University Curriculum

1.​ CPRE 2880: Embedded Systems 1: Introduction

2.​ CPRE 3080: Operating Systems: Principles and Practice

3.​ CPRE 4880: Embedded Systems Design

4.​ CPRE 4890: Computer Networking and Data Communications

New Skills/Knowledge acquired that was not taught in courses

1.​ Control Systems Theory

2.​ Socket Programming

7

8

Table of Contents

1.​ Introduction​ 13

1.1.​ PROBLEM STATEMENT​ 13

1.2.​ INTENDED USERS​ 14

2.​ Requirements, Constraints, And Standards​ 18

2.1.​ REQUIREMENTS & CONSTRAINTS​ 18

2.2.​ ENGINEERING STANDARDS​ 19

3 Project Plan​ 22

3.1 Project Management/Tracking Procedures​ 22

3.2 Task Decomposition​ 22

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria​ 23

3.4 Project Timeline/Schedule​ 25

3.5 Risks And Risk Management/Mitigation​ 25

3.6 Personnel Effort Requirements​ 27

3.7 Other Resource Requirements​ 29

4 Design​ 30

4.1 Design Context​ 30

4.1.1 Broader Context​ 30

8

9

4.1.2 Prior Work/Solutions​ 31

4.1.3 Technical Complexity​ 32

4.2 Design Exploration​ 33

4.2.1 Design Decisions​ 33

4.2.2 Ideation​ 35

4.2.3 Decision-Making and Trade-Off​ 36

4.3​ Proposed Design​ 37

4.3.1 Overview​ 37

4.3.2 Detailed Design and Visual(s)​ 39

4.3.3 Functionality​ 43

4.3.4 Areas of Concern and Development​ 43

4.4 Technology Considerations​ 44

4.5 Design Analysis​ 46

5 Testing​ 47

5.1 Unit Testing​ 47

5.2 Interface Testing​ 47

5.3​ Integration Testing​ 48

5.4​ System Testing​ 48

5.5​ Regression Testing​ 48

9

10

5.6​ Acceptance Testing​ 49

5.7​ Security Testing (if applicable)​ 49

5.8​ Results​ 49

6 Implementation​ 51

7 Professional Responsibility​ 52

7.1 Areas of Responsibility​ 52

7.2 Project Specific Professional Responsibility Areas​ 54

7.3 Most Applicable Professional Responsibility Area​ 56

8 Closing Material​ 59

8.1 Conclusion​ 59

8.2 References​ 60

8.3 Appendices​ 61

9 Team​ 62

9.1 TEAM MEMBERS​ 62

9.2 REQUIRED SKILL SETS FOR YOUR PROJECT​ 62

9.3 SKILL SETS COVERED BY THE TEAM​ 62

9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM​ 63

9.5 INITIAL PROJECT MANAGEMENT ROLES​ 63

9.6 Team Contract​ 63

10

11

List of figures/tables/symbols/definitions

1.​ MicroCART system overview:

2.​ Glossary of Terms:

●​ CPRE 488 MP4/Lab 4 - The fourth lab of the CPRE 488: Embedded

Systems Design course. Our team will be in charge of optimizing the

equipment and software used to conduct this lab.

●​ CrazyFlie - The small drone used for the CPRE 488 MP4 Lab. It is

manufactured by Bitcraze, and has open source firmware which can be

easily written.

11

12

●​ FlyPi - The larger custom quadcopter built by previous MicroCART

teams. Currently in a complete state, but would require some

optimizations.

●​ GUI - C++ based Graphical User Interface that is created with the

application QT, which allows a user-friendly display of the frontend.

●​ CLI - Command Line Interface, an interface through the command line

which allows the user to interact with the system using specific

commands.

●​ Ground station - Name used for the group of software components that lie

in between the quadcopters and the GUI: Backend, CrazyFlie Adapter, and

CrazyFlie Ground station.

●​ Backend - Software module written in Python which handles incoming

packets from the frontend and sends them to the necessary destination.

Also handles data from cameras and other sources.

●​ Crazy radio/dongle - USB radio stick that sends packets to and from the

CrazyFlies.

●​ Test stand - A device used to hold the CrazyFlie in place while fine-tuning

its parameters, a port is located at the bottom of the test stand that allows

an arduino to connect to it.

●​ Test stand tracker - An arduino connected to the test stand that will collect

positional data from the CrazyFlie through the port and sends it to the PC

directly via a USB cord.

12

13

1.​INTRODUCTION

1.1.​ PROBLEM STATEMENT

Quadcopters, and drones in a broader sense, are seeing more day to to day usage

across many fields such as agriculture, transportation of goods, the military-industrial

complex and so many more! Our project is known as the MicroCART Mini project and

we are designing/iterating new software for a mini-quadcopter that will be used as

learning materials for our College’s Computer Engineering students, in addition to

actualizing a quadcopter into flight via designing hardware and software. As our project

is focusing on creating small remote controlled devices, for both educational and

non-specific usages, the focus of our design will primarily be on sustaining controlled

flight. Uncontrolled flight is a hazard not only to the quadcopter but also to the

environment around it, which means we will have to make the controls adaptable for the

mini quadcopter to be used by untrained non-professionals and for an automated program

to be able to utilize sensors to obtain information from around the quadcopter and

through a program complete a flight in new terrain while minimizing damage from or

outright preventing any crashes. Since our quadcopters are constrained by their small

sizes, we will be connecting our quadcopter with remote sensors to absorb information

such that our device, which lacks them, will be able to utilize it for flight navigation.

Sensory navigation opens up the possibility for unnavigated routes to be flown, such as in

a disaster scenario for search and rescue, to have new route information recorded, and for

optimizing a flight path in new terrain safely.

13

14

1.2.​ INTENDED USERS

1.​ CPRE 488 Students

a.​ Senior/Graduate-level students taking CPRE 488 in Spring 2025.

b.​ Must have completed CPRE 381 or COMS 321

c.​ Must be able to perform with Mini-Quadcopters after 4 intro labs

d.​ Limited amount of time they can dedicate solely to this class

Needs: CPRE 488 students need an operational and improved platform to work on Lab 4.

Our Senior Design team can improve the prior hardware, systems and framework to

provide students with a more convenient environment to work on Lab 4.

Benefits: Lab 4 for CPRE 488 students will be conducted smoother, increasing their

productivity and making better progress. Students will also learn how to fine-tune control

systems like the PID Control in Lab 4 and implement that into an RC quadcopter.

2.​ Successor Project Team

a.​ Senior-level students working on the MicroCART Senior Design Project

in the future.

b.​ Senior-level knowledge base

c.​ Multiple Disciplines (i.e., CPRE, EE, SE)

d.​ Will be working off of what we left off

14

15

Needs: Successor Senior Design teams would need tutorials like a step-by-step guide or

video tutorial on complicated parts of the project. Besides that, they would need proper

and updated documentation on the project based on what we changed and improved from

the past projects. They would also need code that is easy to understand and make changes

to.

Benefits: With improved information “library”, successor project teams will be able to

find the information that is associated with the different parts of the project they will be

working with in a shorter period of time and be able to catch up or surpass the progress

that our team has made in comparison. It will also give an outline of the order to go about

the project when they are starting out to give themselves a longer period of time to

optimize their own progress.​

3.​ CPRE 488 Teacher/Advisor/TAs

a.​ Course Instructors for CPRE 488

b.​ High-level course knowledge

c.​ May have seen previous projects done and performed

d.​ Observing to see if our project and students’ work meet project

requirements

e.​ Have limited time, and more responsibilities

Needs: A high-level overview of what the project is and how we have organized the

project. Separation of different presentations and the expectations that we were trying to

15

16

meet for all. Note that detail where we found trouble and what helped us get past it.

General instructions that detail the processes we went through, explaining why we chose

certain methods.

Benefits: A reduced time period for reading necessary items and ignoring the details that

they have seen before and can otherwise ignore. An enhanced ability to find where

groups/individuals are struggling and to be able to quickly tell them possible solutions to

issues that rise up. Able to take up less time than would otherwise be without the

pre-recordings

4.​ Potential Incoming College Students

a.​ High school tour groups

b.​ Highschool level knowledge

c.​ Want to attract them to be like us

d.​ May have interests in other engineering fields

e.​ Need to show them how this connects to other ISU disciplines

Needs: Potential incoming college students need to be interested and drawn into our

project and be able to see what they could learn if they were to become students here.

The incoming students need to have an explanation of the project that will make sense to

them, given they will not be familiar with much of the material/technologies we use.

16

17

Benefits: Potential students may be able to base their decisions on colleges by seeing

what engineering students at Iowa State can accomplish.

17

18

2.​ REQUIREMENTS, CONSTRAINTS, AND STANDARDS

2.1.​ REQUIREMENTS & CONSTRAINTS

●​ Mini Quadcopter should be able to:

○​ Fly smoothly

■​ Flight stabilization

■​ No sudden “random” movements

■​ Quick reactions to directional inputs (For example, to stop turning

when the turning button is no longer pushed)

○​ Connect to remote equipment for data analysis

○​ Be able to connect to remote sensors and utilize the information to fly

○​ Be utilized easily even by someone with no prior experience in controlling

any remote control vehicle

●​ Frontend/Backend should be able to:

○​ Be accessible through the current method

○​ Display data from flight information

○​ Be able to enable an uncontrolled flight via sensor data

●​ Documentation must:

○​ Explain the steps throughout the project

18

19

■​ Plan of action, task breakdown, time taken, changes made from the

previous project, what we could have done better, what we did not

get to and will leave for the following year’s group to complete.

○​ Document any problems that came up throughout the development process

and record how we solved them for future project groups or, when

applicable, by teachers, TAs, and students.

○​ How to solve issues that come up frequently (FAQ Sheet)

○​ Catch users up-to-speed for the programming project depending on their

role

■​ Student, TA, Advisor, Teacher, Successor team, or the general

public

○​ Show and explain how our project connects to various other fields and

draw interest from observers to look deeper into it

2.2.​ ENGINEERING STANDARDS

The sub-category that is appropriate for our project would be Computer Technology. The

three IEEE standards that apply to our project are:

1.​ IEEE 802.11s-2011: IEEE Standard for Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) specifications Amendment.

●​ This standard has relevance because it focuses on wireless

communication. In our project, we have a backend that communicates the

19

20

remote-controlled quadcopter with the ground station, which means

wireless communication and data transmission.

2.​ IEEE 1687-2014: IEEE Standard for Access and Control of Instrumentation

Embedded within a Semiconductor Device

●​ This standard is about accessing instrumentation embedded within a

semiconductor device, which is precisely what our project focuses on

integrating and improving a quadcopter's embedded systems.

3.​ IEEE 1936.1-2021: IEEE Standard for Drone Applications Framework

●​ This standard is about frameworks for the support of drone applications.

Our project emphasizes working with drones (quadcopters) and their flight

control systems.

These standards for our device were chosen due to how our project, which is

building and/or implementing a control system into a mini quadcopter, and this utilizes

remote control through wireless devices, accessing the quadcopter itself for data, and

reiterating the fact that this is a drone device that we are using.

Some of the other possible standards choices that we did not choose were battery

standards. We did not use these standards due to them being rather broad and rather

20

21

nonspecific to our project for the most part, due to them being a far more secondary

aspect, in comparison to our chosen standards which are indubitably more so related.

21

22

3 PROJECT PLAN

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

We are adopting a waterfall-agile hybrid methodology. We have broken down our

project into different phases to guide the general path for the rest of the project. The

different phases include MP4, Backend, and Frontend. To effectively distribute work and

manage deadlines for these different phases, we adopt the Agile methodology to allocate

tasks and issues.

Progress throughout the course of this project will be documented through the use

of GitLab issues. GitLab issues will be used to designate tasks for each team member

and provide a timeline for what we need to work on. This is how previous teams for this

project have tracked progress, and we will follow suit. It is also helpful to track deadlines

and motivate/keep track of team members to work on a specific issue before it is due.

3.2 TASK DECOMPOSITION

●​ Documentation

○​ Progressive throughout

●​ MicroCART

○​ CPRE 488 - MP 4 (aka Lab 4)

■​ PID Research

■​ CrazyFlie

22

23

○​ Backend

■​ CPRE 488- Framework

○​ Frontend

■​ GUI & CLI

○​ Communication

■​ CrazyFlie Adapter

■​ CrazyFlie Ground station

○​ Global Positioning Control

●​ Semester End Presentation

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Milestones:

MP-4 compilation:

●​ Measuring is easy, it's based on an existing 488 lab. The goal is 100% completion

but not making a lab document that a student must submit.

Understanding the backend(Big picture):

●​ This involves understanding how the system works from a high-level perspective.

It is quantifiable by the ability to to explain what each component is and its

purpose.

Dive into sub-components of the communication pipeline:

23

24

●​ Expanding the last milestone, we then need to gain a deeper understanding of

each subcomponent. This is quantifiable in a similar way.

Optimize issues with the GUI:

●​ There are issues within the GUI that affect the ease of use, while it is functional,

there are prominent bugs that should be addressed. This is measurable by the

amount of bugs encountered during a session. We aim to attack the most common

ones to reduce the debugging time for students.

Add Global Positioning:

●​ This is a new feature we will be adding to the 488 lab. This would need some

involvement from Dr. Jones to tie it to the 488 curriculum. To measure this would

lay the groundwork for other teams to build upon. The best outcome would be to

implement the feature and thoroughly add it to the lab.

Explore FlyPi:

●​ This is a stretch goal in the experimental portion of the project, the previous teams

were doing some fairly complex stuff. A reasonable goal for us would be to

organize better what already exists. The best outcome would be to expand upon

what the last group left us.

Pick up where the last group left off (FlyPi):

●​ This is expanding on the last milestone. The actual contents of what is achievable

are unknown at this point as we have not done the exploration yet.

24

25

3.4 PROJECT TIMELINE/SCHEDULE

Note:​

●​ Subtasks are other colors of the same group

●​ Associated tasks are worked down over while working on the task itself

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Risk Scale: 1 (Low) - 10 (High)

Backend CprE 488 framework/ CprE 488 MP-4:

(2) Low risk:

25

26

●​ We are working to optimize the existing solution. There are some bugs present

that could hinder students' progress in lab 4. The risk is low because we can

always revert to the previous version that contains minor bugs. ​

●​ Mitigation: do incremental solutions so that if we have trouble with one aspect, it

doesn't affect others.

Ground Station and Adapter:

(1) Low risk:

●​ This was requested from the previous senior design team, They wrote the

software to communicate with the crazy file through the crazy radio. In that

pipeline, there is an intermediate component, the adapter. They mentioned that the

ground station should absorb this. It works as is but might help speed up the

communication pipeline. ​

●​ Mitigation: This is more just ensuring that we don't diminish performance and

that the result is more readable to next year's team.

Global Positioning:

(7) Medium risk.

●​ This is a familiar feature therefore, we would be building it from the ground up. It

would be a rewarding aspect of the project. But the risk is that we don't get it done

in the time allotted and then would have to pass it to the next team which could

26

27

lead to miscommunication or abandonment of the feature.​

●​ Mitigation: makes sure that we document our intentions and our progress to a

degree where, if we don't finish, the next group will be able to pick up where we

left off quickly.

Deployment:

(9) High risk

●​ This is the final deployment of the VM containing our revisions. At the end of the

year, we will want our changes to be deployed across all the 488 lab machines.

There is a reasonable concern that if there is an issue, there would be little time to

fix it. Therefore, none of our changes would take effect for the 488 lab.

●​ Mitigation: do a test deployment beforehand to identify potential issues.

3.6 PERSONNEL EFFORT REQUIREMENTS

4 Group Members - Expecting minimum of 6 hours per week from each person

{Please understand that for estimated hours we are using the value of the largest amount

of time expected to be spent on a task, even though from the Gantt chart on 3.4.) we can

see overlapping of multiple tasks on various weeks, so even though estimatedhours/week/

27

28

individual is 6 per say, then during the following weeks less time will be dedicated to the

task.}

[Hours Total Formula]: Duration x Estimated Hours/Week x Number of individuals

Estimated hours Formula: ​ [Hours Total] / 4 / 12​

(Rounded up due to 3 weeks of solely research)

Tasks Duration (Weeks)

Estimated

(Hours/week)

[Per individual]

Hours Total

(Hours)

[Sum of all team

members]

Documentation &

Research
14 2 96

Backend

CPRE 488-

Framework

5 – –

CPRE 488 - MP 4 5 6 120

PID Research 4 2 32

CrazyFlie 9 – –

GUI & CLI 4 3 48

Communication

(Adapter & ground

station)

5 - -

CrazyFlie Adapter 3 4 48

28

29

CrazyFlie Ground

station
3 4 48

Global Positioning

Control
2 3 24

Semester End

Presentation
3 3 48

Estimated Total

Duration
12 ~10

464​

~116 per individual

[While the above is a calculated estimate, a more likely approximation is 80 total hours

and 8 hours/ week after accounting for time overlaps, division of work, and breaks]

3.7 OTHER RESOURCE REQUIREMENTS

Some non-financial resources that our project is utilizing include knowledge from

our preceding groups and the code repository, virtual machine, a BitCraze CrazyFlie

information sheet that will record the state of lab equipment. Quality assurance is

checked by both us and our advisor to ensure that it works to expected specifications.

29

30

4 DESIGN

4.1 DESIGN CONTEXT

Our design focuses on improving and optimizing the infrastructure and equipment

of CPRE 488 Lab 4 to improve the quality of learning of the students. Besides that, we

aim to hold a live demonstration of our design of the FlyPi drone during Scholar’s Day at

ISU to attract prospective students.

4.1.1 BROADER CONTEXT

This semester our project consisted of preparing the lab materials for future CPRE

488 classes, which includes preparing the lab documentation as well as fixing issues with

the lab materials whether they be hardware or software related. This means the

community we are designing for is the Iowa State University’s engineering department of

education. Our design will affect the senior level students that are both taking this course

next semester, the teacher of CPR E 488 (Dr. Jones), and the senior design teams that

take over this project next year. A broader summary of how our project covers the four

principles of responsibility is detailed in the table below:

30

31

4.1.2 PRIOR WORK/SOLUTIONS

The MicroCART project has been ongoing for many years, but the MicroCART

mini aspect of the project has been going on for about 6 years, when the CPR E 488 class

was revamped due to the progress of technology and started to move away from large and

dangerous quadcopters. The teams from previous years have designed many of the class

materials ranging from the classroom GUI that is used in their lab 4, the lab documents,

and even the custom 3D-printed mini-quadcopter testing stands that are used constantly

after getting into the later parts of the lab.

But how does our project compare to similar products (mini quad-copters)? To

answer that, we must first explain what some of the mini-quadcopters available on the

market do. The products that we are going to utilize for this explanation are the Kopis

Freestyle 4-inch FPV Drone[5], the DJI Mini 4 Pro Drone[6], and an “Open source

ESP32-based quadcopter made from scratch”[4], that was made from individually

sourced pieces by a professional in the field of computers and robotics. The Kopis

Freestyle 4-inch FPV Drone[5] is a mini-quadcopter with a first-person camera, but with

a short flight-time of 5 to 6 minutes without a battery upgrade. The DJI Mini 4 Pro

Drone[6] is a mini-quadcopter that is quite ‘large’, with a longer battery life of 34

minutes or 45 with the battery upgrade, a more crash-resistant frame, a camera with night

vision, but at the cost of a much heavier price ($759 without upgrades) and a weight of

249 grams, one gram away from 250 grams at which point any drone must be registered

to the FAA (Federal Aviation Administration)[3]. The most similar drone to our project is

the “Open source ESP32-based quadcopter made from scratch”[4], which is a drone that

31

32

is composed of individual parts that are all detailed with the locations of where to obtain

them. This drone focused more on stability and was able to fly quite stably in the

demonstrations shown.

Some of the things that make our MicroCART project unique from these mini

quadcopters is how our GUI interacts with the CrazyFlie to transmit commands and

receive data, while the also having the custom test stand that enables the testing and

configurings of the drones flying capabilities while denying any accidents from

occurring. Most drones on the market-place are connected to a limited piece of software,

with only the open-source drone having the ability to make custom firmware for it in an

easy manner. Unlike the other open-source drone however, our CrazyFlie is an

open-source drone from BitCraze[1], who sells the drones and equipment needed to

communicate with them, while also providing trouble-shooting software that is freely

downloaded and can fix firmware should errors occur in the microprocessor during a

crash.​

4.1.3 TECHNICAL COMPLEXITY

The technical complexity of our project’s design is slightly lower in regard to

hardware compared to the rather large complexity when it comes to our software.

Our hardware is relatively new but also partially self-programmed and

self-designed by past project groups since the hardware is intended for learning usage.

The hardware consists of CrazyFlies (mini quadcopter(s) used for student practice), a test

stand & its reading device, and controllers which all together are rather simplistic and

32

33

require only a small amount of practice to get used to while lacking large difficulties

when it comes to learning them.

The software complexity is akin to a high incline before a plateau in comparison

to the hardware which is a small but linear hill. With the software having both a backend

that works itself through the use of 3 different programming languages, and a frontend

that has some issues reading from the backend that increase as the duration of the

program increases but is otherwise straightforward when you use it along the given

instructions. Our project scope includes making it simpler to utilize and measure the

hardware while increasing ease of comprehension and decreasing issues and bugs that

occur in the software. As our project utilizes open-source hardware and software, this

means that there are likely other similar technologies, programs, or codes that utilize

some of the hardware(s) and software(s) making it more well-established.

In conclusion, this leaves us with a project that has a medium-high internal

technical complexity, while having a low external technical complexity.

4.2 DESIGN EXPLORATION

4.2.1 DESIGN DECISIONS

The area that we are trying to optimize is the backend portion which is the

backbone of our project. The backend connects to our test stand using USB, and it uses a

TCP connection to connect to the CrazyFlie adapter and ground station.

33

34

A key design decision that we will need to make is implementing a test stand

tracker and connecting it to the backend. A test stand tracker is a more convenient way to

capture the yaw, roll and pitch rate values of the CrazyFlie quadcopter, because the test

stand has a more accurate sensor, which is able to accurately calculate the rate values

based on the movement of the quadcopter while bound to the test stand. As of now,

students are using the on board sensors for logging variables in the CrazyFlie quadcopter

to plot on the GUI graph. The built in logging variables may not be as accurate and as

convenient because most of the time it fails to capture the specific state the quadcopter is

currently in as well as its current yaw, roll and pitch rate values.

Besides that, another design decision that we made is combining the CrazyFlie

adapter and CrazyFlie ground station. The CrazyFlie adapter decodes packets from the

backend and sends data to the backend, and has some callback functions that do relatively

little actual translating like set_param, and get_param etc for logging variables. So in

reality, it appears that the adapter basically just lets things pass almost right through to the

CrazyFlie ground station. Therefore, we can omit the CrazyFlie adapter entirely by

combining the adapter and the ground station, with the benefit of this being the reduced

communication overhead of sending data across less components.

Lastly, we plan on implementing a Global Positioning System (GPS) for the FlyPi

quadcopter to be used in our demos during Iowa State school tours. In the past,

MicroCART teams have found a workaround for this temporarily by comparing two

different simulations of quadcopters, with one using a PID controller and the other using

a LQR controller, which does not necessarily provide the touring students a comparison

34

35

between simulation and reality. But with an implemented GPS, we are able to compare

the aerial coordinates of a quadcopter simulated with a PID controller and the currently

in-flight quadcopter using a GPS.

4.2.2 IDEATION

Design decision: Fixing issues in the backend, such as inconvenience during graph

logging that demonstrates out of order and dropped packets.

1.​ Start fresh

a.​ Instead of working on the current iteration of our project code, we could

create a whole new backend from scratch in an effort to solve any issues

that we found.

2.​ Not changing the backend code, but changing the GUI code

a.​ Deploy an artificial fix to the solution. When packet loss occurs, do not

allow the setpoint/value to drop to 0, but instead retain its previous value.

When out of order packets occur, never log and graph values that were in

the past.

3.​ Polishing current backend

a.​ Going through the lab that our project will be used in and then writing

down and implementing fixes that we find along the way.

4.​ Combining languages for backend code

a.​ Currently our backend code makes use of C, C++, and Python to work and

if we were to unify it all, then it should be easier to find where an error

occurs compared to having to check at least 3 code files.

35

36

5.​ Implementing a test stand tracker and connecting it to the backend component

a.​ Implementing a test stand tracker will allow the GUI to log and graph

more stable and accurate values compared to the built-in sensor values,

allowing for a more convenient GUI and student interaction.

4.2.3 DECISION-MAKING AND TRADE-OFF

The following diagram is intended to enumerate how we felt about our solution in

values from 1-5 with 1 as low (better) and 5 as high (worse) in terms of choice, while the

most likely end result explains what we predicted the solution would turn out.

Solutions Time Difficulty Probably Outcome

Start Fresh 5 5 ●​ Maybe working

●​ Many bugs

GUI instead of

Backend code fix

1 1 ●​ Working, but still inherently flawed

●​ Later project groups may not see what we

were looking at

Polish Current

Backend

2 3 ●​ Definitely working

●​ Fixes problems along the way

Combine Backend

languages

4 4 ●​ Maybe working

●​ Mixed results, not necessarily best

●​ Different languages have better results when

used for specific purposes

36

37

Implement a Test

Stand Tracker and

connecting it to

Backend component

3 2 ●​ Working

●​ Not a cure-all for all of the problems that the

backend is having

●​ May have other problems later down the line

We ended up choosing “Polish Current Backend”, while also looking at

implementing the test stand tracker and keeping the GUI fix in mind. For our decision the

probable outcome mattered the most in comparison to time and difficulty of the option

itself. We chose this because it will address the backend problems and improve

information intake, while also leaving us with a guaranteed working product with less

flaws that a user would see, since we looked through and learned how to use it as users

ourselves.

4.3​ PROPOSED DESIGN

4.3.1 OVERVIEW

Our main design will take place in the CrazyFlie ground station, a

pre-implemented system, which has a high-level description as shown in Figure 1. The

following are the descriptions of the key components of the ground station:

1. CLI / GUI

The CLI (Command Line Interface) and GUI (Graphical User Interface), are both

interfaces which allows users to interact with the Crazyflie through the frontend. The

GUI provides a more graphical way of representing data compared to the CLI which

37

38

requires users to know specific commands to interface with the CrazyFlie. Both CLI and

GUI transmit and receive data to and from the frontend component, allowing users to

modify, receive parameters of the system, as well as receive data from the CrazyFlie to

allow logging and graphing of the data in the GUI.

2. Frontend

The frontend of our ground station is what users see and interact with directly.

Our frontend is composed of the CLI and GUI. It transmits and receives data from the

backend, and presents that data in a more visually appealing or easier to understand way

to the users.

3. Backend

The backend component is the backbone of our ground station. It receives and

decodes packets of data from the sockets, as well as transmitting and encoding packets to

be sent to the sockets. Overall, the backend component is in charge of translating packets

into data or vice versa, while acting as a medium of communication between the user

(frontend) and the CrazyFlie (sockets).

4. Sockets

The socket component here represents the way of how CrazyFlie communicates

with our backend wirelessly. Through the wireless connection of TCP web sockets, our

backend will form a two-way communication with the CrazyFlie, allowing us to modify

the software currently present in the quadcopter.

38

39

Figure 1: High-level description of the CrazyFlie ground station

4.3.2 DETAILED DESIGN AND VISUAL(S)

A more specific description of the CrazyFlie ground station is shown in Figure 2,

which includes details and more technical terms that are easier for engineers to

understand. The following are the more detailed descriptions of the key components of

the ground station:

1. CLI / GUI

Both the CLI (Command Line Interface) and the GUI (Graphical User Interface)

receive data from the frontend and outputs it in a way that is easier for the users to

understand. The CLI has multiple commands encoded, which requires users to know

detailed commands in order for them to interact with the CrazyFlie. An example of

commands include:

39

40

●​ sendSetPoints(), which allows users to set a specific setpoint for the CrazyFlie

during PID controller tuning

●​ setParamValue(), which allows users to set parameter values such as the kp, ki, kd

values of the PID controller

 The CLI program is written in C but the GUI is written in C++, because our project

utilizes an application development framework for creating GUIs called Qt, which

generates C++ code for GUIs created. With the GUI, users are able to get and set

parameters without the need to know the actual command to do so, with an example

shown in Figure 2.

40

41

Figure 2: Using GUI to get and set parameters

2. Frontend

The frontend of our ground station is what users see and interact with directly.

Our frontend is composed of the CLI and GUI. It transmits and receives data from the

backend, with the importance of being able to create and store new logging variables to

be displayed and graphed in the GUI graphing tool.

3. Backend

The backend component is the backbone of our ground station. The main function

of the backend is decoding and encoding packets, it receives and decodes packets from

sockets and transmits them to the frontend. It also encodes and transmits the data it

receives from the frontend and transmits it to the sockets, it does so by combining

metadata and data to form a wire-sendable packet, and sends it through TCP sockets,

where the backend acts as a TCP socket server, listening for a client to connect.

4. Sockets

The sockets that we use in our project are TCP web sockets. Encoded packets are

sent from the backend server socket to the CrazyFlie client socket and the CrazyFlie will

modify its software settings based on the packets received. This allows users to fine-tune

PID controllers by setting their parameters (kp, ki, kd) for either yaw, pitch and roll rates

in the GUI and in the end it will get transmitted to the CrazyFlie.

41

42

Figure 3: Detailed description of the CrazyFlie ground station

42

43

Figure 4: CrazyFlie ground station call stack

4.3.3 FUNCTIONALITY

Our design is intended to be able to measure and then control the various

directional movements of the quadcopter when utilized in the CPR E 488 lab 4. A user

will connect a radio dongle (USB Radio) to the computer and after seeing it is selected

when connected to the virtual machine that the lab computers will use, will then follow

the steps in the lab to connect to the mini quadcopter and then be able to use the Lab 4

GUI to input and test values for, graph, and analyze the various axis of motion that the

quadcopter can move. The system works by measuring how the quadcopter moves and

then relaying it to a graphical display which has selectable variables that output the

information itself. The input values can be adjusted on a separate ‘window’ of the GUI.

Once this is done, the students will then work on programming the ‘controller’ screen of

the GUI which is the rest of the lab.

4.3.4 AREAS OF CONCERN AND DEVELOPMENT

 The current design can be used to complete the lab, but fails to meet the

requirements of the teacher, as the backend has some bugs which interfere with data

collection, and one of the important testing components of this lab, the test stand, is

currently unable to output information that makes it to the GUI where values from it are

used as variables.

43

44

As such, our primary concerns for this design are fixing some backend errors that

we have noticed occurring as we work on them, while also re-enabling the test stand such

that it can be used in the lab again. Finally, our last concern is making sure that the

project when we leave it is easier for the next sd491 group members to learn about and

then work through.

Our immediate plans involve going through all the code that we have and creating

debug messages to help us find where, in the large amount of code files, the error is

coming from. We do not have immediate questions when it comes to this solution or its

implementation, but we do make sure that we are recording problems and solutions as

they come up, and when we do have a question that we ask it.

4.4 TECHNOLOGY CONSIDERATIONS

 In our project we are utilizing the following technologies:

●​ Virtual Machine​ (Software)

○​ Project environment and means of deployment

○​ GUI & remote connection

○​ (-) Prone to connection issues even with simple usb inputs

●​ CrazyFlie - BitCraze’s mini quadcopter model​ (Hardware)

○​ Open source software and hardware for CrazyFlie

●​ Network technology / Radio Communications ​ (Hardware)

○​ The wireless communication method

44

45

●​ Microcontrollers/Low-level programming​ (Hardware/Software)

○​ Drones onboard software

○​ (-) Limited potential

●​ PCB fabrication​ (Solution)

○​ Battery retention

The hardware is a set standard that we are unable to change in our project. Save

for maybe the exception of the ‘battery retention racks’ or lack thereof, that can be

remedied by adding PCB fabricated designs which can then be attached to the CrazyFlie.

The virtual lab environment that is available on the CPR E 488 class website is instead

what we will be changing. Specifically, we were editing the code that is part of the lab

environment download for the CPR E 488 Lab 4 lab. Utilizing a custom GUI made by

previous groups, we have to look through how they made it while we were editing it. The

CrazyFlie mini quadcopter is a relatively inexpensive mini quadcopter and as such has

small equipment with limited possibilities. In order to communicate with the lab drones, a

USB radio is used to communicate with the CrazyFlie, though the radio can also

communicate with other equipment that is available in the lab such as sensors which can

then be fed back to the CrazyFlie and enable more advanced flying methods. Since it has

been decided that we cannot change the hardware, the only changes we can make are

through the software, unless we were to choose to start from scratch, but due to our

limited timeline, it would be very unwise to choose to do so.

45

46

4.5 DESIGN ANALYSIS

Going into this project, while having knowledge that some of it worked, we also

knew that there would be some issues and what a few of them are. We began by learning

and testing the various features of the lab equipment, lab environment, and code that the

lab will be using. We created many types of documents including organizational folders,

a FAQ sheet, a project equipment health sheet, and quite a few others to make for better

user satisfaction, since we found some issues when we were going through it ourselves.

Our design from 4.3 is being utilized and helping to guide us while we tested the current

state of the project itself and make notes of the various issues that we encountered with

either the actual fix for them written by them, or descriptions of the issue and how we can

replicate them. Although, we would only write down something under the fix area when

we have actually implemented it.

For our future design, we will continue with bug-fixing and record keeping in

order to ensure that future users will have an easier time learning about, setting up,

testing out, and finally experimenting with this project.

46

47

5 TESTING

5.1 UNIT TESTING

Our infrastructure has several software components, allowing us to perform unit

tests on each of the parts individually to ensure that the system as a whole is working

properly. These components include the front-end GUIs, the backend modules, and the

groundstation. The GUIs can be tested by entering inputs and verifying that the correct

outputs are there and the correct thing is sent to the terminal. The backend and ground

station are more complex to unit test as one component, so this can be broken down into

smaller components that can be tested manually through checking terminal output.

5.2 INTERFACE TESTING

Interface testing would be more critical to our design due to the level of

complexity in communication between different components. Since we will not be

rewriting the firmware code for the CrazyFlie, we would not need to test the interface

between the open-source CrazyFlie and Crazyradio. Therefore, we would need to go

through a thorough testing for the rest of the components, which are the backend and

frontend communication via UNIX sockets. Our method of testing involves inserting

print statements when each process sends and receives a message as well as outputting

the outputs to a file for debugging purposes to ensure that data is correctly getting passed,

which can be done easily with IDEs like Visual Studio Code.

47

48

5.3​ INTEGRATION TESTING

Integration testing will be similar to our interface testing such as running the

components bit-by-bit/individually and not as an overall large component, and generating

tests that will ensure the same output is generated when certain inputs are entered, which

can be easily done through the GUI or through some effort through the CLI.

5.4​ SYSTEM TESTING

After each component is tested individually, we will move on the test the entirety

of the system altogether while running the tests with a CrazyFlie drone and conducting

Lab 4 step by step. Through the use of our clearly provided documentation of Lab 4 as

well as the GUI, we would be able to complete Lab 4 without encountering any errors or

bugs, while improving any quality of life issues that arise.

5.5​ REGRESSION TESTING

Our current project is based on updating and fixing up the work from teams as far

back as 6 years ago. As the project is in an already working state, what we need to do is

improve the project and make sure all pieces are working together just like, if not better,

than before. We are ensuring that new features do not break the old functionality by

utilizing an observe, test, check results, repeat first 3 as needed, and finally push the

solutions to a development branch for further testing with the other group member’s

48

49

work. By utilizing this process to test for breakage along with utilizing git to observe

changes that occur in the workspace, and backtrack when an update breaks something

despite testing for otherwise, we are able to ensure stable testing and improvement.

5.6​ ACCEPTANCE TESTING

The first step of acceptance testing is to ensure client approval, which is

accomplished by consulting our advisor, Dr. Jones before deploying the software for lab

use. If we are given the green light by Dr. Jones, we would continue with the deployment

and the actual delivery of Lab 4. We would then request feedback from students and

compare it with last year’s lab feedback to deduce if there was an improvement in the

overall quality of the lab and their experience.

5.7​ SECURITY TESTING

Not applicable for our project.

5.8​ RESULTS

As of now, the CrazyFlie runs perfectly well thanks to the previous MicroCART

team, the changes that we made to the system were required changes but it does not result

in any testing failures.

49

50

An example of the results of testing through the CLI is as shown in Figure 5

below.

Figure 5: CLI results of testing

50

51

6 IMPLEMENTATION

Since the main goal of our project is to improve and optimize the entire system,

we would need more than to implement those improvements as we would need a

thorough understanding and go through an immense debugging process to figure out

where the problems lie. Our main plan for implementation of the project would be what

was listed in Section 3: Project Plan of this document.

Overall, the progress that we made thus far through testing and debugging

include:

●​ Figured out the main problem that results in “dropped packets” which relates to a

log file that is used for graphing implemented by previous MicroCART teams.

●​ Solved the connection issue between the Arduino and the PC, so what is left now

is determine methods to send and receive data via a USB cord.

51

52

7 ETHICS AND PROFESSIONAL RESPONSIBILITY

7.1​AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

52

53

One area that we are doing well is work competence. We are recording our

workloads and reporting our individual contributions to the project honestly and

non-deceptively. An area that we are working on is the health, safety and well-being of

our users which are students because our product does not ensure that no users would be

53

54

harmed while using our product. In order to improve this shortcoming, we would insert

warning labels into the documentation for users to be aware of.

7.2 FOUR PRINCIPLES

54

Four Principles Beneficence Nonmaleficence Respect for
Autonomy Justice

Public health, safety, &
welfare

Project helps
improve the learning

of all who are
involved

Design promotes safe
practices

(ie: Test Stands)

Implementation
provides a

framework, that
participants are

expected to
complete

Design allows for
access to all

parties

Global, cultural, &
social

Brings different
communities

together to learn

Implementation harms no
one indirectly

Design does not
affect cultural

practices

Benefits are shared
equally amongst

all parties

Environmental

Mini Quadcopters,
are small, decreasing

potential
environmental

impact

Rechargeable batteries and
non-toxic, minimally

processed materials ensure
low environmental impact

Open-source
design allows

replacement parts
to be sourced

according to user’s
desires

Implementation
does not harm the

environment

Economic Project teaches
job-applicable skills

Project largely uses
pre-existing open-source

design parts

CrazyFlie is an
open-source drone
that can be found
outside the school

Custom drone will
not infringe upon
any private sales;

CrazyFlie software
only affects our

items

55

A broader area context-principle that we are utilizing positively in this project is

how our open-source origin design allows for the replacement of parts. Since the

CrazyFlie mini quadcopter is made use of within by numerous people for testing,

ranging from students to teachers in our context specifically, accidents are bound to occur

and can/have caused enough damage that mere tape and glue are no longer enough as

solutions. Since there have been some issues that damaged a drone beyond repair already,

we have had to look to other locations for replacement pieces, ranging from battery

holding implements on top of many of the drones to full body replacement for a drone

missing its corner, rotor and all.

One broader context row this project is largely missing or rather lacking is the

Global, Cultural, and Social row. Inside of this row, many of the pairs involved in this

row are largely due to the scope of the project, which is limited more-so to the college.

Different communities are coming to the college to learn equally while our project

instead is meant for the audience of a ‘student’ rather than a ‘student of CERTAIN

CONTEXT’. Nonmaleficence, Respect for Autonomy, and Justice are all similarly

passive with not much being put forward in this context. Thus, while we are certainly not

performing in a fashion that hinders this broader context, our project finds it difficult to

say that it is supporting it, hence it is a mostly neutral row.

55

56

7.3 VIRTUES

Order, moderation, and resolution[2] are three virtues that are important to our

team. To us, order meant how we were to be utilizing the AGILE and Waterfall work

methods. By working through items in a predefined manner, we were able to keep track

of where we were as a group. Moderation is meant to keep us on track, but not go wild

and either do too much or do too little. We each performed a moderate amount of work

on our own, but when it came to working together we were rather lacking, and took more

time to learn/check up on what each of us were individually working on when it would

likely have been more efficient to work as a group for certain task items. Resolution, or

more precisely resolve, meant to firmly decide on what we would do, before getting into

a task and then finishing it, even if it meant having to ask questions or learn new but

necessary information to complete the task. In the future we will be continuing this

practice, but will ask our fellow team members when we come across something that we

do not understand as this would have made many work halting issues be resolved much

quicker.

●​ Ryan: A virtue that I feel I have demonstrated in this project is perseverance.

Perseverance is important in projects such as this because there will be times

when a goal may seem impossible or too hard to achieve. This project has

brought plenty of challenges and I have had to get through these challenges to

reach our goals. Another virtue that I find important that I have not demonstrated

yet is collaboration and working with others. I have found it difficult to find time

and opportunity to work with my team members as much as this project requires.

56

57

This is something that will need to be fixed next semester because it is impossible

for engineering projects as large as this to be completed by yourself.

●​ Daniel: An important virtue to me that I have demonstrated is clear and thorough

documentation. Throughout this project, I have been looking through, organizing,

and writing documents in order to better guide future students and project

members due to the quite bloated project base that has not really been pruned. In

comparison, a virtue that I have not demonstrated well is attentiveness to the

needs of others, which is largely in part due to not working deeply with all of my

fellow team members, something that our sub-groups will have to work together

to do as well.

●​ Jonah: A virtue that has been important to me has been the willingness to learn.

This project focused on software development, an area that I was lacking in. The

ability to recognize what I did not know and strive to research and gain an

understanding of a subject on the fly has been a constant cycle in the development

of our project. A virtue that I personally strive for but regarding this project

ultimately fell short was time management. I did not spend enough time on this

project throughout the semester. This will need to be fixed for next semester. It

will mostlikey be caused by better personal planning.

●​ Yi: A virtue that I have demonstrated is inspiration and motivation. This is

important because teams require motivation to work or they will end up with

terrible work efficiency. What I did was create a Git Issues board and included

tasks with a deadline that we will follow as a team. A virtue that I think is

57

58

important but have not demonstrated is time management. Fall 2024 has been a

very busy semester for me. I had bad task prioritization and scheduling that

ultimately resulted in less work done for this project. In the future semester, I will

be taking less classes, and manage my time more efficiently through a task

scheduler.

58

59

8 CLOSING MATERIAL

8.1 CONCLUSION

In conclusion, our project so far has achieved a better organization of the

communal MicroCART project repository, documented and improved the status/health of

the CPRE 488 lab 4 materials, and updated the CPR E 488 software that is being utilized

in this lab project. When we began this project, our goals were to evaluate and improve

the CPR E 488 lab 4 experience, connect the CrazyFlie adapter and groundstation, and

connect the test stand tracker to the backend.

Evaluating and improving the CPR E 488 lab 4 experience meant going through

this lab ourselves and then doing an evaluation that ranged from how users interacted

with the software, to finding, listing, and answering questions that would likely come up

throughout the lab experience, and to fixing bugs/issues that would interfere with the

student experience or were observed. Overall, we accomplished this goal; reducing the

amount of issues that will come up in the next lab experience; improving the guide that

students will look through in order to go through the project, now including access to

resources and links that users will utilize when stuck on an issue; and for issues that we

could not address, how to solve such an issue or avoid them when they could not be

solved (ie: USB recognition and docking being an issue with the virtual machine itself

and not the lab environment, hence out of our hands). We ran into difficulties when

combining the CrazyFlie adapter and groundstation, with both the difficulties in finding

the different dependencies that were effected by and affecting these different parts, since

59

60

the different languages that were originally used to work on each one were different from

the other, and will be completing it next semester.

We also worked to finish a tool for students, the current test stand for the crazy

flie contains a sensor that could be used for monitoring the crazy flies movement. This

sensor had not been integrated into the base station GUI. Attempts to get this tool up and

running for next semesters students are looking promising. This will give the student in

lab another tool to assist in their learning.

8.2 REFERENCES

Websites:

[1] “Bitcraze Shop.” Bitcraze Store, BitCraze, 2024, store.bitcraze.io/. Accessed 17 Nov.

2024.

[2] Franklin, Benjamin. “Benjamin Franklin - 13 Virtues | PDF | Virtue | Science.” Scribd,

1790, www.scribd.com/document/235479275/Benjamin-Franklin-13-Virtues.

Excerpt from Benjamin Franklin’s Autobiography.

[3] “How to Register Your Drone | Federal Aviation Administration.” Faa.gov, 18 Mar.

2024, www.faa.gov/uas/getting_started/register_drone. Accessed 7 Dec. 2024.

[4] Kalachev, Oleg. “Open Source ESP32-Based Quadcopter Made from Scratch.”

Arduino Project Hub, 6 Jan. 2024, projecthub.arduino.cc/okalachev/flix-58fe43.

Accessed 26 Sept. 2024.

[5] Liang, Oscar. “Review: Holybro Kopis Freestyle 4-Inch FPV Drone.” Oscar Liang,

27 July 2021, oscarliang.com/holybro-kopis-freestyle-4-inch/. Accessed 26 Sept.

2024.

60

61

[6] Nast, Condé. “The DJI Mini 4 pro Is a Small Drone with Huge Appeal.” WIRED, 23

Mar. 2024, www.wired.com/review/dji-mini-4-drone/. Accessed 26 Sept. 2024.

8.3 APPENDICES

Microcart Git Repository: https://git.ece.iastate.edu/danc/MicroCART

61

https://git.ece.iastate.edu/danc/MicroCART

62

9 TEAM

9.1 TEAM MEMBERS

●​ Daniel Zaucha

●​ Jonah Upah

●​ Ryan Lowe

●​ Yi Hang Ang

9.2 REQUIRED SKILL SETS FOR YOUR PROJECT

●​ Coding Skills (At least one of: Python | C | C++)

●​ Networking knowledge

●​ Embedded systems

●​ Embedded programming

●​ Able to utilize Linux / Command Line Interface / Make

9.3 SKILL SETS COVERED BY THE TEAM

Green = Have || Yellow = Some exposure || Red = Inexperienced

Coding
languages

Networking
knowledge

Embedded
Systems

Embedded
Programming

Linux /
CLI / Make

Daniel

Jonah

Ryan

Yi

62

63

9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Hybrid method of Waterfall method and Agile method for project management.

9.5 INITIAL PROJECT MANAGEMENT ROLES

●​ Daniel Zaucha: ​ Client interaction, Communications Lead

●​ Jonah Upah: ​ ​ Hardware Lead, Team Secretary

●​ Ryan Lowe: ​ ​ Technical Advisor

●​ Yi Hang Ang:​ Software Lead

9.6 TEAM CONTRACT

Team Members:

1) Daniel Zaucha​ 2) Ryan Lowe​

3) Jonah Upah​ 4) Yi Hang Ang​

Team Procedures

1.​ Day, time, and location (face-to-face or virtual) for regular team meetings:

-​ Advisor meetings: In-person: Wednesday: 10:00 - 11:00 AM

-​ Work sessions: Thursday: 2:00 PM - 5:00 PM. Sunday 2:00 PM - 5:00 PM

-​ Location: Coover Hall 3050

63

64

2.​ Preferred method of communication updates, reminders, issues, and scheduling

(e.g., e-mail, phone, app, face-to-face): ​

-​ Meetings are done in person, unless someone cannot come in person.

-​ Discord server set up with all group members to communicate when not in

person.

3.​ Decision-making policy (e.g., consensus, majority vote):

-​ Majority votes are required for decision-making. If there is no majority or

votes are split, we will discuss as a team and try to reach a consensus from

group discussion over the issue (OR get Dr. Jones as a tie-breaker vote).

4.​ Procedures for record keeping (i.e., who will keep meeting minutes, how will

minutes be shared/archived):

-​ Jonah will set up meeting notes and record action items during the

meeting. Notes will be kept in a shared folder.

Participation Expectations

1.​ Expected individual attendance, punctuality, and participation at all team

meetings:

-​ Everyone will be expected to attend scheduled meetings unless

extenuating circumstances come up. If this happens, the team member

will inform the group of this.

64

65

2.​ Expected level of responsibility for fulfilling team assignments, timelines, and

deadlines:

-​ Everyone should contribute to completing team assignments, ideally

before deadlines, but preferably a few days before. If someone is not going

to get something done because of circumstances, be sure to contact the

group for assistance.

3.​ Expected level of communication with other team members:

-​ Discord is how we communicate with each other about meeting and tasks.

During the working day responses are expected, subject to change.

4.​ Expected level of commitment to team decisions and tasks:

-​ Everyone puts in an equal amount of time, and thought behind decision

making.

Leadership

1.​ Leadership roles for each team member (e.g., team organization, client

interaction, individual component design, testing, etc.):

-​ Jonah Upah: Team secretary, meeting organizer

-​ Yi Hang Ang: Hardware design

-​ Ryan Lowe: Software Lead

-​ Daniel Zaucha: Client interaction

65

66

2.​ Strategies for supporting and guiding the work of all team members:

-​ The report document will track tasks and time.

-​ Meeting will be a place to discuss concerns about the time line.

-​ Report doc will also have new issues.

3.​ Strategies for recognizing the contributions of all team members:

-​ Contributions of team members will be noted on the weekly reports and

discussed in meetings.

Collaboration and Inclusion

1.​ Describe the skills, expertise, and unique perspectives each team member brings

to the team.

-​ Jonah: EE guy, PCB design,

-​ Yi: Embedded Systems datasheet guy, experience in coding

-​ Ryan: Lots of experience with coding, linux experience

-​ Daniel: S E into CPR E, Coding experience, communication skills

2.​ Strategies for encouraging and supporting contributions and ideas from all team

members:

-​ Allowing open discussion during meeting

-​ Team discussion on any contribution.

66

67

3.​ Procedures for identifying and resolving collaboration or inclusion issues (e.g.,

how will a team member inform the team that the team environment is obstructing

their opportunity or ability to contribute?)

-​ First off, bring up the issue to the group.

-​ Vote or get Dr. Jones to act as a tiebreaker.

Goal-Setting, Planning, and Execution

1.​ Team goals for this semester:

-​ Have a working prototype/design by the end of this semester (subject to

change depending what is expected from this project)

-​ Complete all documentation before deadlines.

2.​ Strategies for planning and assigning individual and team work:

-​ Work will be assigned in meetings. We will estimate how much time work

should take and assign members with a similar work load so that everyone

is working similar hours. Team work will also be assigned in the weekly

meetings.

3.​ Strategies for keeping on task:

-​ Weekly meetings will point out tasks that present an issue.

-​ Report Doc will document what everyone is working on and needs to

accomplish.

67

68

Consequences for Not Adhering to Team Contract

1.​ How will you handle infractions of any of the obligations of this team contract?

-​ Judiciously; as decided by the group at the time as necessary.

2.​ What will your team do if the infractions continue?

-​ Notifying the advisor/instructors if there is no communication.

**

a) I participated in formulating the standards, roles, and procedures as stated in this

contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) Jonah Upah ​ DATE 9/18/2024

2) Yi Hang Ang​ DATE 9/18/2024

3) Daniel Zaucha​ DATE 9/18/2024

4) Ryan Lowe ​ DATE 9/18/2024

68

	1.​INTRODUCTION
	1.1.​PROBLEM STATEMENT
	1.2.​INTENDED USERS
	2.​REQUIREMENTS, CONSTRAINTS, AND STANDARDS
	2.1.​REQUIREMENTS & CONSTRAINTS
	2.2.​ENGINEERING STANDARDS
	3 PROJECT PLAN
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2 TASK DECOMPOSITION
	3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	3.4 PROJECT TIMELINE/SCHEDULE
	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	3.6 PERSONNEL EFFORT REQUIREMENTS
	3.7 OTHER RESOURCE REQUIREMENTS
	4 DESIGN
	4.1 DESIGN CONTEXT
	4.1.1 BROADER CONTEXT
	4.1.2 PRIOR WORK/SOLUTIONS
	4.1.3 TECHNICAL COMPLEXITY
	4.2 DESIGN EXPLORATION
	4.2.1 DESIGN DECISIONS
	4.2.2 IDEATION
	4.2.3 DECISION-MAKING AND TRADE-OFF
	4.3​ PROPOSED DESIGN
	4.3.1 OVERVIEW
	4.3.2 DETAILED DESIGN AND VISUAL(S)
	4.3.3 FUNCTIONALITY
	4.3.4 AREAS OF CONCERN AND DEVELOPMENT
	4.4 TECHNOLOGY CONSIDERATIONS
	4.5 DESIGN ANALYSIS
	5 TESTING

	5.1 UNIT TESTING
	5.2 INTERFACE TESTING
	5.3​ INTEGRATION TESTING
	5.4​ SYSTEM TESTING
	5.5​ REGRESSION TESTING
	5.6​ ACCEPTANCE TESTING
	5.7​ SECURITY TESTING
	5.8​ RESULTS
	6 IMPLEMENTATION
	7 ETHICS AND PROFESSIONAL RESPONSIBILITY
	7.1​AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	7.2 FOUR PRINCIPLES
	7.3 VIRTUES
	8 CLOSING MATERIAL
	8.1 CONCLUSION
	8.2 REFERENCES
	8.3 APPENDICES
	9 TEAM
	9.1 TEAM MEMBERS
	9.2 REQUIRED SKILL SETS FOR YOUR PROJECT
	9.3 SKILL SETS COVERED BY THE TEAM
	9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM
	9.5 INITIAL PROJECT MANAGEMENT ROLES
	9.6 TEAM CONTRACT

